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Abstract 

In every sphere and utility aspects of human life, there is need of metals and construction materials. Minerals which are below the 

near subsurface is almost explored on the basis of direct geospatial evidences. There is high demand of metals and other materials 

which are mined below the surface of earth In the current landscape, there's a demand for faster and more precise exploration 

strategies, particularly emphasizing Greenfield exploration and deep-seated mineralization. This paper conducts a 

comprehensive review of existing methodologies for integrating multi-geoscience datasets aimed at mineral prognostication, 

with a focus on identifying the most precise and authentic Artificial Intelligence (AI) - based data integration techniques. 

Additionally, it offers insights into the current status of mineral exploration in India and the global evolution of data integration 

practices. Several types of geoscientific datasets i.e. geological, geophysical, geochemical and geospectral data have to be 

organized in geospatial domain for meaningful mineral exploration outcome. These datasets have been processed to extract 

exploratory indicator layers for data integration are called Mineral Prospectivity Mapping (MPM). Indeed, MPM is a multiple 

criterion decision making (MCDM) task which provide a predictive model for categorizing of sought areas in terms of ore 

mineralization. There after based upon Geological factors i.e. lithology, structure, shear & fault zones, alteration zones etc. of 

sought mineralized area, selection of drilling parameters (depth, angle, level, type, rpm, feed) is done for resource assessment. 

Literature survey suggests that minerals exploration by integrated approach on the basis of these datasets is still poorly 

performed. It has been gathered that knowledge-driven data integration using Fuzzy Gamma Operator and Multiclass Index 

Overlay method is best suited for mineral exploration. In past, few researchers of other countries have exploited data integration 

approach with encouraging results. Despite the abundance of data available in India, this approach has not been utilized very 

successfully and no standard protocols exist even for decision making for drilling operation. Thus, it's evident that employing the 

Fuzzy Inference System (FIS) algorithm, particularly utilizing the Fuzzy Gamma Operator and Multiclass Index Overlay 

integration method, remains underutilized in designing standardized operating procedures (SOP) for mineral exploration in India 

and decision-making for drilling operations. This approach holds promise for minimizing time lag and optimizing resources such 

as manpower, instruments, and finances. 
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1. Introduction 

In every sphere and utility aspects of human life, there is 

need of metals and construction materials. Nowadays, eco-

nomic and sustainable development of any nation depends on 

the natural resources mineral wealth. Minerals which are 

below the near subsurface is almost explored on the basis of 

direct geospatial information/ evidences. So, there is high 

demand of metals and other materials which are mined below 

the surface of earth. In the present scenario, there's a demand 

for faster and more precise exploration strategies, particularly 

emphasizing Greenfield exploration, concealed / deep-seated 

mineralization & hydrothermal mineralization zones. To 

achieve the goal, multi-dimensional approach should be ex-

plored & attempted using multi-proxy data base, utilizing 

some other economical, precise and potential explorations 

techniques for sustainable development of human being, 

society and country. 

This paper provides an in-depth examination of method-

ologies for integrating diverse geoscience datasets to enhance 

mineral prognostication accuracy, particularly emphasizing 

the exploration of the most reliable AI-driven integration 

techniques. Furthermore, it offers a succinct overview of 

mineral exploration in India alongside the global progression 

of data integration methodologies. 

Majority of explorations are being done with independent 

exploration methods i.e., geological, geophysical, geochem-

ical, remote sensing etc. (Figure 1). To explore/discover new 

minerals deposits, three main types of Geospatial datasets i.e., 

Geological field survey, Geophysical field survey & Geo-

chemical lab based datasets related to specific area are being 

used in isolation. Majority of data sets are available with 

Geological survey of India (GSI), established 172 years ago. 

Since then, GSI is prime provider and nodal agency of basic 

earth science information to government, industry and general 

public and leader in the field of mineral exploration. Integra-

tion of above independent datasets of three surveys will allow 

us to model a MPM which later can be used for decision 

making for drilling operation and estimation of mineral re-

sources. 

Geological field survey produces datasets collected from 

surface of earth which is generalized as two-dimensional 

dataset. Rock distribution maps, fault maps, Geomorpholog-

ical maps are examples of such data. Geophysical data adds 

one more dimension (3
rd

 dimension) to the geological dataset 

and provide information on the basis of physical properties of 

minerals & rocks, at depth derived from Gravity survey, 

Magnetic survey, Seismic profile, resistivity maps etc. Geo-

chemical datasets are obtained from laboratory test conducted 

on sample taken from field survey using high end instruments 

like X- Ray Diffraction (XRD), X-Ray Fluorescence (XRF), 

Energy dispersive X-Ray Spectrometer (EDX), Inductively 

Coupled Plasma Mass Spectrometer (ICPMS) etc. for chem-

ical analysis i.e. crystal structure, phase composition, chem-

ical composition at surface and inside the mineral body. 

Exploration geoscientists are keen to adopt new technology 

for the collection and processing of exploration data but are 

skeptical about automated interpretations of processed data. 

The skepticism is justified to some degree as computer soft-

ware cannot match the human mind in recognizing patterns. 

So despite the proliferation of digital techniques, some human 

expertise intervention also needs to be incorporated while 

using computer based integration of geoscience datasets. So 

exploring best method to computer based integration of all 

type of geoscience datasets i.e. Geological, Geophysical, 

Geochemical, & Remote sensing data, for mineral exploration 

are explicitly needed & to be explored. 

In context of India, this would be a Step towards ‗Atma-

nirbhar Bharat’. India holds promising prospects for explo-

ration and drilling, given its wealth of unexplored minerals in 

significant quantities. Moreover, the future presents ample 

opportunities for the discovery of surface and deep-seated 

mineral deposits through the utilization of modern techniques 

like AI-based data integration methods. 

One of the most significant developments in computer 

handling of spatial data is rise of what are now known as GIS 

system. GIS is a computer system both hardware and software 

for capture, store, manipulate, visualization and analysis of 

Geographically referenced data (Figure 2). GISs have been 

widely applied to a host of discipline such as resource as-

sessment, municipal planning, transportation, marketing, 

mineral exploration, mineral resource assessment, forestry, 

epidemiology and many others. The common factor is simply 

the number of information about phenomena that are widely 

distributed over earth. GIS have not yet been fully exploited 

for mineral exploration by the Geoscientists. 

In the meantime, Fuzzy logic (FL) is developed based on 

the fuzzy set theory proposed by Lotfi A. Zadeh of University 

of California at Berkeley in the year 1965. Since then, it has 

grown by leaps and bound. Application of fuzzy sets and 

fuzzy logic were ushered in by Mamdani through a paper in 

1975. The development in applications were so dramatic that 

within 15 years both consumer products like cameras, wash-

ing machines, TV and industrial product, based on FL Con-

troller, were rolled out in the market. FL has numerous ap-

plications in various fields- Artificial Intelligence, Automo-

bile, computer science, expert system, medical diagnosis, 

neural network, robotics, social science so on. FL empowers 

geoscientists to apply their expertise in constructing models, 

which are then utilized to produce mineral potential maps and 

identify the key evidential layers deemed most crucial for the 

specific style of mineralization. The end result of these FL, 

GIS, IAS and other numerous data integration techniques are 

a series of MPMs that highlight areas of higher exploration 

prospectivity /prognostication for a particular commodity. 

These maps should accurately identify existing deposits 
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within the study area while also indicating promising regions 

for the discovery of new deposits. 

Different scholars utilized GIS, IAS, FIS, Multiclass Index 

Overlay method, other Data driven and knowledge driven 

methods & different publically available software which 

provided the capacity to integrate and combine multiple layers 

of geosciences datasets into mineral prospectivity maps for 

identification of areas for minerals exploration. Although GIS 

have demonstrated notable efficiency and success in MPM 

across various exploration domains in few countries, the in-

tegration of available various types of geoscience datasets 

utilizing a AI based knowledge-driven technique for mineral 

exploration in India remains relatively underutilized. This is 

immediately required for sustainable development of Rail-

ways, Telecom, Nuclear energy, Solar cell, Electric vehicle 

etc. commensurate with pace of development, size of econ-

omy & improvement in quality of life. 

Despite India's abundant geological potential, the inte-

grated approach to mineral exploration hasn't been exten-

sively explored and remains underutilized in designing SOP 

for mineral exploration in India and decision-making for 

drilling operations. With increasing demand for critical min-

erals due to renewable energy growth and electric vehicle 

adoption, there's a need to tap into India's untapped mineral 

resources Thus, it's evident that there is an urgent need to 

assess the best possible data integration techniques from re-

view of earlier research works and then to test and establish a 

chosen method. This approach holds promise for minimizing 

time lag and optimizing resources such as manpower, in-

struments, and finances. This will also help us in exploring 

concealed & deep-seated resources in economical way. 

In this review paper, comprehensive examination has been 

made to assess the best possible integration technique for 

integrating abundant Geoscience datasets which could offer 

promising avenues for more comprehensive mineral prog-

nostication, facilitating the development of a SOP for mineral 

exploration. Following the integration of geological factors 

such as lithology, structure, shear and fault zones, alteration 

zones, etc., in the sought mineralized area, developing a SOP 

for the selection of drilling parameters (including depth, angle, 

level, type, rpm, feed) could be pursued to facilitate resource 

assessment. 

2. Status of Mineral Exploration in India 

Minerals play a crucial role as essential raw materials for 

numerous fundamental industries and serve as a primary 

resource driving development initiatives. Many of these in-

cluding critical minerals are essential in fulfilling the manu-

facturing needs of green technologies such as zero emission 

vehicles, wind turbine, geothermal energy exploration and 

exploitation, solar panels, information and communication 

technologies including semiconductors, superconductors and 

other advanced manufacturing inputs, high tech equipment, 

aviation and national defence. As India shifts towards re-

newable power generation and electric vehicles, there will be 

a substantial surge in the demand for numerous critical min-

erals [10, 55, 56]. 

India‘s demand for mineral resources is in upward trend 

along with population growth, advancement of urbanization 

and industrialization in modern context of environment & 

social issues. The mining industry must explore additional 

resources within the Earth's crust to meet the increasing de-

mand for metals and raw materials. Mineral Exploration is 

inevitable early action for mineral extraction through mining 

sector. Mining sector is India has huge growth potential. 

Conversely, the rate of discovering new ore deposits, par-

ticularly through Greenfield exploration, has steadily de-

creased in recent years due to challenges such as thick over-

burden, remote locations, declining ore grades, and social and 

environmental concerns. Consequently, there is a heightened 

expectation for technological innovations in mineral explora-

tion to ensure the sustainability of non-renewable resources. 

India possesses a distinctive geological tectonic setting that 

is favourable for hosting significant mineral resources. India‘s 

rich mineral wealth terms the back bone of the country and the 

core of its industrial economic and commercial growth. 

Mineral extraction in India traces its roots back to the days of 

the Harappa civilization. Reconnaissance and exploration of 

minerals must be encouraged with particular attention given 

to deep-seated minerals. India‘s mining sector so mineral 

exploration is still under developed as compared with other 

developing economics like China and Brazil. It has huge 

untapped potential. 

India has abundant resources of minerals such as Iron, 

Chromite, Manganese, Bauxite, Coal, Limestone, Dolomite, 

Mica, Zinc, and Graphite. However, it faces shortages in 

resources like Nickel, Cobalt, Molybdenum, Copper, Sulphur, 

Potash, Apatite, Rock Phosphate, Gold, PGEs, Diamonds, and 

others, despite the vast potential area available in the country. 

In 2023, the demand for minerals is estimated to rise by 3%, 

driven by India's status as the third largest energy consuming 

nation globally and the consequent increased demand for 

power and electricity within the country [50]. 

It has been estimated that obvious geological potential 

(OGP) area in India contain around 1.0 Lakh Sq.km of Gold, 

3.0 Lakh Sq.km of Diamond, 1.6 Lakh Sq.km of Base Metal, 

8000 Sq.km of PGEs and 5000 Sq.km of iron ore. A prelim-

inary estimate suggests that less than 2% of the total OGP area 

is currently mined, and less than 10% has undergone detailed 

exploration. Thus many greenfield areas where there could be 

a scope for green mineralization are yet to be explored for 

bulk commodities [10]. However, India has immense poten-

tial for concealed and deep-seated deposits. 

The latest mineral exploration programme for minerals in-

cluding critical minerals for India are not only required for 

achieving sustainable development & realizing the visions of 

―Atma Nirbhar Bharat‖. So it has become imperative to 

identify and develops reliable, quicker mineral exploration 

techniques. The use of technology in particular digital tech-
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niques based upon AI is vital to utilize available vast data to 

discover Brownfield and Greenfield exploration targets. This 

will also reduce import dependency as India is 100% import 

dependant on certain element like Lithium, Cobalt, Nickel, 

vanadium, Niobium, Germanium Rhenium, Beryllium, 

Strontium etc. Identifying more efficient methods for dis-

covering the next generation of critical mineral deposits re-

quires leveraging geological expertise, data analytics, model-

ling techniques, and machine learning capabilities [55, 56]. 

3. Evolution of Data Integration for 

Mineral Exploration 

Integration offers numerous advantages, including en-

hanced potential for success and reduced exploration risk, 

expedited evaluation and turnover of regional data, and im-

proved geological interpretation through comprehensive uti-

lization of all available information. The challenge lies in 

implementing efficient approaches for verifying and inte-

grating all available geoscience data in a systematic strategy 

to ensure increased accuracy and completeness of interpreta-

tion. In the preceding twenty years, the average cost of a new 

discovery has surged nearly fourfold, while the average size 

of deposits has decreased by 30%. The advancement of 

deep-sea exploration technology, coupled with the depletion 

of terrestrial mineral resources, has sparked significant atten-

tion from various countries. Since the first discovery of sea-

floor hydrothermal vents at mid-ocean ridges in the late 1970s, 

researchers have employed a multitude of techniques for 

MPM. 

Numerous modeling methods for producing MPM using a 

GIS or IAS have been developed over past 25 years. These 

methods can be divided into two basic categories 

Knowledge-driven & Data –driven techniques. Both of these 

approaches are utilized to assign evidential weights and inte-

grate various evidential maps for MCDM in drilling opera-

tions. In order to conduct MPM, multiple datasets or layers 

(e.g. geological, geophysical, geochemical and remote sens-

ing data) must be collected, analyzed and integrated. The 

integration of different digital geoscientific data sets is a key 

component of MPM which has evolved over a period of three 

decades as a need of time. 

Mineral exploration has been traditionally carried out for 

terrestrial resources through "Field Survey" by geologists, 

geophysicists, and geochemists primarily based on direct 

evidence. Nevertheless, due to the continuous and exponential 

increase in the demand for minerals resulting from factors 

such as rapid population growth, urbanization, and serious 

concerns over global warming, new methods are being 

sought. 

After the introduction of computer software such as GIS 

and IAS in 1970, fuzzy set theory proposed by Zadeh in 1965 

[80] and its application to human decision-making by Zim-

mermann H.J et al. [81], sparked a surge in mineral explora-

tion activities using computer-based expert systems. These 

systems allowed for the integration of geoscience data into 

MPM to identify mineral resources. Researchers such as 

Bonham-Carter, G.F., Agterberg, F.P., Wright [5, 6, 18-22], 

Moon, W.M. et al [39, 40] and An P. [7-9], made initial suc-

cessful efforts. 

In last quarter of century and recent past, data mining 

techniques have been inspired by human intelligence, leading 

to a new approach to computing. Data mining involves ma-

chine-driven discoveries from data. Machine learning algo-

rithms (MLA) are now widely used for mineral prospectivity 

modeling due to the increasing size and variety of datasets. 

These algorithms are efficient and can handle large, 

high-dimensional datasets with non-Gaussian distributions 

[15]. The models generated are robust and can be used to 

identify exploration targets. Classical prospectivity modeling 

has been dominated by Weights-of-Evidences (WoE) and 

Fuzzy logic (FL) methods. While MLA is more data-driven 

and effective than WoE, they do require a large and diverse 

training dataset. The FL technique is knowledge-based and 

founded on fuzzy set theory, allowing users to incorporate 

their knowledge into the model through various data trans-

formations. The work by Nykanen et al [59-61] and Burkin et 

al [26] incorporated the evidence layers‘ concept, allowing 

multiple evidence layers to be produced from data and en-

hancing the fuzzy transformation and FIS. 

An important method of data mining is provided by “Vis-

ualization or 2D imaging”. Human brain has great capacity to 

decipher and make sense of complicated data if the infor-

mation is presented clearly in the form of Map, to the eye. 

During last three decades, significant progress has been made 

in ways of displaying information visually for best possible 

interpretation. The introduction of color imaging as 2D im-

aging was one of those strides. So subtle features can be 

emphasized or picked out in an individual data set. Next step 

was to bring multidisciplinary data together in a so called GIS, 

which allowed people to integrate 2D datasets either by laying 

them out and tracking them side by side or by overlapping 

them at the same scale. GIS programs like ArcView, MapInfo, 

and ArcGIS offer the capability to manage and query data-

bases, empowering users to extract valuable insights from 

large datasets and make informed decisions based on spatial 

analysis results [15]. 

Inversion of geophysical data from basic field measure-

ments to interpreted physical rock properties using 3 dimen-

sionally software brought “3D interpretation/visualization”. 

Over the past two decades, various technologies have con-

verged to create advanced 3D visualization software like 

"Gocad". The term common earth model (CEM) has been 

coined to describe geologic model that have been built by 

integration of cross-disciplinary datasets (Garret et al [44]; 

McGaughey et al. [54]). The diverse range of data in mineral 

exploration poses additional challenges for intuitive inter-

pretation of 3D visualization based upon fusion of multiple 

datasets. 
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Multilayer exploration datasets, however, they typically 

contain intricate numerical correlations that visualization 

alone may not uncover. It is important, then, to supplement 

visualization with “Statistical Data Mining & pattern recog-

nition techniques i.e. Probabilistic Modelling”. In an explo-

ration case, the most useful product of a statistical analysis is 

an estimate of the conditional probability that a deposit occurs 

at some location. Following methods such as WoE (widely 

used for MPM earlier by Bonham-Carter [21], Raines [68], 

Kemp et al [49], Functional approximation / Neural Network 

(Poulton et al [67], Brown et al [24, 25], Bougrain et al [23] 

and Radial basis function (Singer and Kouda [72, 73]; Harris 

and Pan [45]; Harris et al [46, 47]; Porwal et al [63-65]. 

Various “Non-Probabilistic methods” also have been tried 

successfully for computer based prospectivity modelling 

using Boolean fuzzy logic methods /systems [15]. In the past 

three decades, the use of MLA for MPM has been driven by 

the increasing size of individual datasets and range of data 

type available for mineral exploration. 

Several approaches to MPM are categorized into Da-

ta-Driven and Knowledge-Driven methods (Bonham-Carter 

[21], Carranza [34-36], Harris and Pan [45]). In Data-Driven 

or empirical techniques, the known mineral deposits in a 

region of interest are used as ‗Training points‘ to established 

spatial relationship between the known deposits and particular 

geological, geophysical and geochemical features. The con-

nection between evidential maps and the tailing points is 

quantified, determining the significance of each evidence map 

(Carranza and Hale [32, 33]), and subsequently integrated into 

a unified MPP (Nykanen and Salmirinne [59]). Example of 

empirical methods of MPM are weight of evidence (Bon-

ham-Carter et al [19]; Carranza and Hale [31]), Logistic Re-

gression (Agterberg and Bonham-Carter [22]; Carranza and 

Hale [28]), neural networks (Porwal et al [63, 64]; Singer and 

Kauda [72]), evidential belief functions (Carranza [32, 34]), 

Bayesian network classifiers (Porwal et al [65] and support 

vector machines (Abedi et al [2]; Zuo and Carranza [83]). The 

Knowledge-Driven methods [53] are those where mineral 

deposits are predicted with the help of expert experience & 

judgement. This include use of Boolean logic (Bon-

ham-Carter [18]), index overlay (Bonham-Carter [19], Car-

ranza [27], Sadegahi et al [71], the Demster-Shafer belief 

theory (Moon [58]), fuzzy logic overlay & inference system 

(An et al [7], Chung and Moon [39], Porwal A. et al [66], 

Barak et al [11-14], Sun et al [75]), wildcat mapping (Car-

ranza [37, 38], Carranza and Hale [29]) and outranking 

methods (Abedi et al [4]). Data-driven modeling methods 

typically operate within areas with known occurrences, while 

knowledge-driven techniques are better suited for "Green-

fields Exploration" regions. 

FIS, one of the methods of Knowledge-driven techniques to 

integrate the exploration layers including geological, geo-

physical, geochemical and remote sensing data. FIS is a 

mapping technique in which the FL applies the inputs to 

provide outputs as described in figure 3. FIS can illustrate an 

exploration geoscientist's reasoning in predicting mineral 

potential by integrating predictor linguistic variables. These 

techniques require experience & expertise of a geoscientist to 

define fuzzy scores to prepare probability maps which later 

used for drilling boreholes location determination for drilling 

operations. 

In India also, there is urgent need for such integrated ap-

proach for minerals resources exploration. 

4. Historical Background 

Mineral exploration endeavors to uncover new mineral 

deposits within a designated region. A primary objective of 

this process involves identifying prospective areas within the 

region of interest. Diverse geo-datasets, including geological, 

geophysical, and geochemical data, are gathered, analyzed, 

and merged for MPM to delineate prospective areas. Thus 

MPM is a MCDM task and produces a predictive model for 

outlining prospective areas. 

In recent major research work where such approach were 

used i.e. Venkataraman et al [77] attempted limited data in-

tegration through using Baysian statistics based on WoE 

method and fuzzy logic algorithm for base metal in Rajasthan 

area, India, Tangestani and Moore [76] applied data integrated 

approach using three principal component analysis (PCA) on 

alteration mapping based on Landsat TM bands in Iran, 

Lunden and Wang [52] attempted integration of remote 

sensing data with geophysical data etc. in a GSI platform for 

exact geological interpretation only, Wolfgang [78] attempted 

geophysical datasets i.e. geomagnetic and geo-electrical data 

using GIS for archaeological investigation only. R. De-

rakhshani et al [41] used fuzzy logic model for geological data 

only for Porphyry Copper MPM in area of Iran. G. F. Bon-

ham-Carter et al [18] applied Bayes rule based integration of 

geological, airborne geophysical and geochemical survey data 

using GIS quadtree structure for Gold MPM in Nova Scotia, 

Canada. M. Abedi et al [1] attempted ELECTRE III, MCDM 

technique (outranking approach of operations research) by 

integration of geological, geophysical and geochemical da-

tasets for Copper MPM in Kerman, Iran. Yue Liu et al [51] 

applied data-driven WoE and fuzzy logic models for com-

parative study from multisource geospatial datasets i.e. geo-

logical, geophysical and geochemical for Tungsten MPM for 

South China. Alok Porwal et al [66] discussed Fuzzy infer-

ence system (knowledge driven artificial intelligence system) 

as a case study to create MPM of Uranium in Western Aus-

tralia. S.Barak et al [11-14] explored Copper using Fuzzy 

inference system based data integration technique for multi 

geoscience datasets in Iran. Satyabrata Behera et al [16] at-

tempted hybrid model utilizing WoE and FL (WOE-FL) to 

create a MPM on GIS platform for known resources of Gold 

in Hutti belt India. H. Sabbaghi et al [70] applied TOPSIS 

(Technique for Order Preference by Similarity to an Ideal 

Solution) which is knowledge driven technique for Cop-

per-Molybdenum in Iran. 

http://www.sciencepg.com/journal/earth


Earth Sciences http://www.sciencepg.com/journal/earth 

 

132 

The summary of salient research work in the related field is 

being provided in chronological order. 

G. F. Bonham-Carter [18] utilized a variety of regional 

geoscience datasets from Nova Scotia, Canada and analyzed 

using GIS. The datasets include bedrock and surficial geo-

logical maps, airborne geophysical survey data, geochemistry 

from lake sediment samples, and mineral occurrence data. A 

gold occurrence map based solely on geochemistry was gen-

erated. Additionally, Bayes's rule-based integration of geo-

logical, airborne geophysical and geochemical survey data 

using GIS was employed to incorporate other factors. 

P. An et al [62] used Fuzzy set theory using algebraic sum 

and Gamma operator (Knowledge-Driven approach) was 

applied for investigation and testing with mine datasets of 

geology & geophysical from Farley lake area, Canada. Pos-

sibility distribution maps were derived which have success-

fully outlined favorable area for base metal deposit and iron 

formation deposits. 

Brown et al [24] studied on multilayer feed –forward neural 

network (Data-Driven approach), trained with a gradient 

decent, back-propagation algorithm, used to estimate the 

favorability for gold deposits using a raster GIS database in 

New South wales. The database consists of geology, regional 

faults, airborne magnetic and gamma ray survey data and 63 

deposit and occurrence locations. The result of this study 

offered several advantages over existing methods. 

Venkataraman et al [77] attempted to integrate different da 

sets such as Landsat TM, airborne magnetic, geochemical, 

geological and ground-based data of Rajpura-Dariba Raja-

sthan India through GIS using hybrid integration of Da-

ta-Driven approach and Knowledge-Driven approach. They 

used (I) Bayesian statistics based on the weights of evidence 

method and (2) a fuzzy logic algorithm to derive spatial 

models to target potential base metal mineralized areas for 

future exploration. The final produced map indicated four 

categories of potential zones for sulfide mineralization on the 

basis of posterior probability & fuzzy set approval (using 

Bayesian statistics). 

Tangestani and Moore [76] compiled, evaluated, and inte-

grated diverse spatial geological data to create a potential map 

for porphyry copper deposits in northern Shahr-e-Babak, Iran. 

Technique used was Principal Component Analysis (PCA) i.e. 

Crosta technique, a type of Data-Driven approach. Aero-

magnetic data were also used to extract magnetic anomalies 

and extra liniments. The final map highlighted the most im-

portant known copper deposits in high favorability domains. 

Maysam Abedi et al [1] explored the application of the 

MCDM technique known as ELECTRE III, a type of 

Knowledge-Driven method commonly used in operations 

research, to MPM. They combined evidential map layers 

obtained from geological, geophysical, and geochemical 

datasets. In a case study, thirteen evidential map layers were 

utilized for MPM in the region encompassing the Now Chun 

copper prospect in Iran's Kerman province. The outputs were 

validated using 3D models of copper and molybdenum con-

centrations from 21 drill hole areas. This approach demon-

strated excellent performance in MPM. 

Maysam Abedi et al [3] used Bayesian and neural tech-

niques, a type of Data-driven approach, to generate a pro-

spectivity map for porphyry –Cu deposits. Various layers of 

geological, geophysical, and geochemical data were inte-

grated to assess the Now Chun porphyry-copper deposits in 

Iran's Kerman province and to generate a prospectivity map 

for mineral exploration. Both methods showed correct classi-

fication rates of 52.38% and 80.95% for 21 boreholes. 

Yue Liu et al [52] employed Data-driven WofE and 

Knowledge-Driven Fuzzy Logic models to assess tungsten 

polymetallic deposits in the Nanling metallogenic belt, South 

China. Initially, seven ore-controlling factors sourced from 

various geospatial datasets (geological, geochemical, and 

geophysical) were utilized for data integration in both models. 

Two MPM were created, efficiently pinpointing the deposit 

locations. The WofE map accurately predicted 81% of the 

deposits within 13.6% of the study area, while the fuzzy logic 

map forecasted 81.5% of the deposits within 13% of the area. 

Overall, both models demonstrated satisfactory capabilities in 

accurately identifying regions containing known mineral 

deposits. 

Alok Porwal et al [66] described Mamdani-type fuzzy in-

ference system i.e. Knowledge-Driven method, for prospec-

tivity modelling of mineral system and then case study for 

surficial uranium prospectivity modelling in the Yeelirrie area, 

Western Australia was performed. In the output prospectivity 

map, some area showed high probability. 

J. R. Harris et al [48] used Data-driven (used Random forest 

(RF) supervised classifier technique) and Knowledge-driven 

(used weighted –index overlay method) techniques to produce 

regional Gold prospectivity maps of a portion of Melville 

Peninsula, Northern Canada using geophysical and geo-

chemical data. RF technique outperformed the 

weighted-index overlay while predicting of the known Gold 

occurrence. 

Nannan Zhang et al [82] used weights-of-evidence model 

(Data-Driven method) and fuzzy logic model 

(Knowledge-driven method) for MPM. Geological maps, 

geochemical samples and data from known gold deposits of 

Western Junggar area, Xinjiang Province, China and then 

integrated using expert knowledge for probable mineral oc-

currences. The MPM using fuzzy logic methods demonstrated 

validity. In areas with numerous deposits, data-driven ap-

proaches for MPM were deemed suitable. However, in cases 

where sufficient data are lacking, knowledge-driven ap-

proaches, such as the fuzzy logic method utilized in this study, 

often yield superior results. 

S. Barak et al [11] used Knowledge driven FIS to integrate 

the exploration layers including geological, remote sensing, 

geochemical and magnetic data for porphyry copper deposit 

of the Kahang area, Iran. MPM was obtained and compared 

with the 33 drilled boreholes in the studied area. 70.6% ac-

curacy between model result and true data from the boreholes 
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were achieved and consequently the appropriate areas were 

suggested for the subsequent drilling. 

S. Barak et al. [12] employed a Knowledge-driven FIS to 

integrate copper exploration layers in Neysian, Iran. The 

output of the FIS was a classified mineral potential map, 

which exhibited a 70.6% agreement with the 33 drilled 

boreholes. 

S. Barak et al. [13] utilized a Knowledge-driven FIS to 

generate a copper MPM in the Saveh area of Iran's Markazi 

province. They incorporated seven indicator layers extracted 

from geological, geochemical, and geophysical datasets into a 

geospatial database for data integration. A fuzzy gamma op-

erator is applied during the initial phase of exploratory data 

integration to generate three criterion layers from geology, 

geophysics, and geochemistry, respectively. In the second 

phase, FIS was implemented in three steps. Subsequently, in 

the third phase, MPM was conducted. To assess the accuracy 

of the FIS method, data from 18 boreholes were utilized. 

Ultimately, copper mineralization was identified, and the 

eastern and central portions of the Saveh prospect were iden-

tified as favorable potential zones for further mining opera-

tions. 

Christopher M. Yeomans et al [79] utilized a hybrid inte-

gration approach, combining knowledge-driven feature ex-

traction with a data-driven machine learning approach, for 

tungsten mineralization. They employed the data-driven 

Random Forest algorithm to model tungsten mineralization in 

Southwest England, utilizing various geological, geochemical, 

and geophysical evidence layers. Fuzzy set theory was also 

used as a part of an augmented feature extraction step. The use 

of fuzzy data transformation mean feature extraction added 

some user-knowledge about mineralization. Legacy mining 

data from drilling reports and mine descriptions were em-

ployed for additional validation of the fuzzy-transformed 

models. In essence, the modeling workflow presented a 

unique fusion of knowledge-driven feature extraction and 

data-driven machine learning modeling. 

P. K. Singh et al [74] used knowledge driven approach i.e 

index overlay with multi class and Fuzzy logic modelling to 

integrate geological, geochemical, geophysical and remote 

sensing datasets for gold prognostication for area mainly 

falling in Sonbhadra district, southern part of Uttar Pradesh. 

This integration was done using subjective weightage for 

evidence maps and class score. The result of modelling was 

validated with known occurrences of gold mineralization. 

Samaneh Barak et al. [14] assessed the effectiveness of 

different fuzzy-based fusion methods in MPM. They utilized 

these methods to address a MCDM problem aimed at de-

signing a layout for drilling supplementary boreholes through 

a thorough analysis of geospatial datasets. Knowledge driven 

methods like fuzzy gamma operator, FIS, fuzzy outranking, 

fuzzy c-mean clustering and fuzzy ordered weighted averag-

ing (FOWA) were used. Kahang porphyry Cu-Mo deposit in 

Iran was chosen as a case study to examine the performance of 

these fuzzy methods in MPM. It was found that FIS and 

FOWA had the highest efficiency with 80% & 78% respec-

tively. 

Satyabrata Behera et al [16] employed Data-driven (WoE), 

Knowledge-driven (FL), and a hybrid model integrating WoE 

and FL. Their aim was to map gold prospectivity and derive 

optimal exploration targets in a section of the Hutti-Maski 

schist greenbelt in India, covering 1352 square km and con-

taining 20 known gold occurrences. They created 16 spatial 

evidential raster layers on a GIS platform, incorporating pre-

dictive indicators crucial for gold exploration. Various geo-

logical data sources, geochemical anomalies, and hypother-

mal alteration zones obtained from digital image processing 

of Landsat and satellite imagery were combined to produce 

MPM aimed at delineating future targets. Comparative anal-

ysis revealed that the hybrid model, specifically the WoE-FL 

model, exhibited the highest efficiency, achieving a predictive 

rate of 87%. Additionally, low-risk exploration targets were 

identified based on uncertainty assessment. 

Fanous Mohammadi et al [57] in his research article aimed 

to assess and compare GIS-based Knowledge-driven fuzzy 

models for generating an orogenic gold prospectivity map in 

the Saqqez area, located in northwest Iran. Five fuzzy opera-

tors, including AND, OR, FAP, FAS, and GAMMA, were 

employed on the predictor maps to identify the most effective 

prediction model. However, maps generated by the AND, OR, 

FAP, and FAS operators proved to be inaccurate and failed to 

precisely identify the locations of discovered gold occur-

rences. In contrast, the GAMMA operator yielded acceptable 

results, accurately identifying potentially economic target 

sites. Its effectiveness in predicting and defining 

cost-effective target sites for orogenic gold deposits, as well 

as optimizing mineral deposit exploitation, was demonstrated. 

Hamid Sabbaghi et al. [70] investigated the efficacy of the 

well-known MCDM technique, i.e. TOPSIS (Technique for 

Order Preference by Similarity to Ideal Solution), for im-

proved and precise evaluation of porphyry cop-

per-molybdenum deposits in the central region of the Uru-

mieh-Dokhtar volcanic arc in Iran. Typically, various evi-

dence layers consist of raster maps, including geological, 

geochemical, and geophysical data, which are integrated to 

generate a MPM. TOPSIS relies on comparing all the alter-

natives involved in the problem. TOPSIS can provide a more 

precise investigation of a region of interest compared to other 

knowledge-driven integration methods. The final detailed 

map was generated using the TOPSIS technique, and its 

outputs were validated through comparison with field recon-

naissance and data from 24 boreholes. This method helps 

prevent unnecessary additional drilling in a study area. 

Benjamin B et al [17] examined multi-index overlay and 

fuzzy logic models, both representing Knowledge-driven 

approaches, for mapping lode-gold prospectivity in the Ahafo 

gold district of southwestern Ghana using GIS. To identify 

potential zones for lode-gold mineralization in the study area, 

weighted evidential layers were merged to produce mul-

ti-index overlay and fuzzy prospectivity maps. The discre-
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tized multi-index overlay prospectivity map accurately pre-

dicted 76% of known occurrences, covering 24% of the study 

area as prospective. Meanwhile, the discretized fuzzy pro-

spectivity map predicted 74% of known occurrences, en-

compassing 26% of the study area. 

Masoud esmailzadeh et al [43] used Knowledge driven 

methods to combine the geological, remote sensing and ge-

ochemical data in order to generate MPM in the Kigh-

al-Bourmolk Cu-Mo porphyry deposits in Iran. By examina-

tion of the created layers, the consistency of the potential 

areas was verified by field surveys. Subsequently, weights 

were assigned to each layer, considering the conceptual model 

of the porphyry copper system. Following this, the layers 

were integrated using the fuzzy gamma operator technique, 

resulting in the generation of the final MPM. Regarding the 

generated MPM, 0.86% of the studied areas shows a high 

potential mineralization and these areas were proposed for the 

subsequent exploration drilling locations. 

5. Discussion 

The ultimate goal of a mineral exploration project is to 

detect new economical deposits in a region of interest. Col-

lecting simultaneously various geospatial datasets e.g. geol-

ogy, geophysics and geochemistry, processing these data to 

extract exploratory indicator layers and data integration are 

called MPM. 

Considering today word of digitization and availability of 

data analytics tools along with the vast geo scientific man-

power expertise, acumen & information available with such a 

prestigious GSI, it is immediate need to strengthen further the 

mineral exploration techniques for Greenfields exploration 

based resources in optimal ways in our country also. Majority 

of datasets are available with Geological survey of India. 

These datasets are collected independently by Geological, 

Geophysical, Geochemical, national aero-geophysical map-

ping (NAGPM), Drilling extensive field over a period of last 

172 years. 

Exploration data sets are either categorical (e.g. geology) or 

ratio (geophysics, geochemistry). The latter is easily incor-

porated in a FIS whereas former cannot be directly input to 

Fuzzy membership functions to calculate their fuzzy mem-

bership values. There are two possible methods to handle 

categorical data; first, get an expert-based ranking which 

converts them into ordinal data and then input the latter into 

appropriate fuzzy membership functions. 

Earlier researcher utilized GIS, IAS, FIS, Multiclass Index 

Overlay method, other Data driven and knowledge driven 

methods to integrate and combine multiple layers of geosci-

ences datasets into mineral prospectivity maps for identifica-

tion of areas for minerals exploration. The integration of FIS 

and multiclass index overlay methods with GIS platforms for 

mineral exploration in India remains relatively underutilized. 

Therefore, integrated dataset approaches need to be tried more 

exhaustively for mineral exploration in order to minimize 

time lag & optimization of resources i.e. man, instruments and 

money and to validate the technique with drilling boreholes 

data. 

FIS utilizing the platform of GIS is well known MCDM 

methods. FIS is a widely accepted MCDM technique due to 

its sound logic, simultaneous consideration of ideals & non 

ideal solutions and easily programmable computation pro-

cedure. FIS which is a type of Knowledge-driven technique 

with AI system, is transparent, easy to build and interpretable 

by experts in this field as built in natural language. 

Integration of datasets of three surveys will allow us to 

model a MPM which later can be used for decision making for 

drilling operation and estimation of mineral resources. The 

seamless integration and interoperability of exploration data 

play pivotal roles in mineral exploration. They empower us to 

amalgamate, analyze, and visualize diverse data types and 

sources, fostering the generation of novel insights and miti-

gating uncertainty to facilitate credible predictions. So, 

well-established FIS algorithm can be more explored for the 

mineral potential modelling especially observing the effec-

tiveness of fuzzy Gamma operator in the field of ―Greenfield 

Exploration‖. 

Therefore, it has been established that there is an immediate 

need for more precise AI based data integration technique as 

large volume of data in digital and Map form is available. In 

contemporary integrated exploration practices, a key objec-

tive is to incorporate mathematically sound representations of 

information derived from various datasets. This involves 

developing effective tools capable of accurately and effi-

ciently combining evidence from each dataset to derive the 

most reasonable and realistic interpretations. For this purpose, 

FIS provides a more precise method of representing the in-

formation contend of different dataset and of combining them 

with a choice of processing operation. 

6. Conclusion & Research gap 

Literature survey suggests that minerals exploration by in-

tegrated approach on the basis of these datasets is still poorly 

performed. It has been gathered that knowledge-driven data 

integration using Fuzzy Gamma Operator and Multiclass 

Index Overlay method is best suited for mineral exploration. 

Multiclass Index Overlay model & fuzzy Gamma Operator 

[42, 43, 69] have more flexibility and ability for prognostica-

tion. 

In past, few researchers of other countries have exploited 

data integration approach with encouraging results. Thus, it's 

evident that despite the abundance of data available in India, 

employing the FIS algorithm, particularly utilizing the Fuzzy 

Gamma Operator and Multiclass Index Overlay integration 

method, remains underutilized. Hence such techniques should 

be tried in future research for mineral exploration particularly 

in context of India. This will also assist designing SOP for 

mineral exploration in India and decision-making for drilling 

operations. This approach holds promise for minimizing time 
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lag and optimizing resources such as manpower, instruments, 

and finances. This will also help us in exploring concealed & 

deep-seated resources in economical way. 

Future research could extensively utilize FIS in a 

three-phase synthesis to create MPM. Initially, a Fuzzy 

gamma operator would amalgamate primary criteria such as 

geology, geophysics, geochemistry, and remote sensing data. 

Subsequently, FIS would integrate these criteria into a unified 

MPM with input from geoscientific experts. Finally, a mul-

tifractal approach would classify the map into favorability 

zones, guiding exploratory drilling for resource assessment, 

crucial for subsequent mining endeavors. 

Despite India's abundant geological potential, the inte-

grated approach to mineral exploration hasn't been exten-

sively explored. With increasing demand for critical minerals 

due to renewable energy growth and electric vehicle adoption, 

there's a need to tap into India's untapped mineral resources. 

Evaluating fuzzy-based fusion functions like the Fuzzy 

Gamma operator for MPM development is crucial for de-

signing a SOP for mineral exploration and drilling operations. 

This evaluation should involve comprehensive testing and 

analysis using weighted aggregates of evidence and multiclass 

index overlay methods applied to geospatial datasets, tailored 

to India's unique context. 

In the context of India, it is found that exploring the ap-

plication of techniques such as Multiclass Index Overlay 

method and Fuzzy Gamma Operator on FIS for integrating 

abundant Geoscience datasets could offer promising avenues 

for more comprehensive mineral prognostication, facilitating 

the development of a SOP for mineral exploration. Following 

the integration of geological factors such as lithology, struc-

ture, shear and fault zones, alteration zones, etc., in the sought 

mineralized area, developing a SOP for the selection of 

drilling parameters (including depth, angle, level, type, rpm, 

feed) could be pursued to facilitate resource assessment. 

 
Figure 1. Types of Exploration methods. 
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Figure 2. Geological Information System (GIS). 

 
Figure 3. Working of Fuzzy Inference System (FIS). 
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