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Abstract: Due to their physical properties and potential importance to the understanding of the electron mobility in a wide 

variety of materials, polarons are currently the subject of intensive research. Using one of the world most powerfull trapping 

entity, we investigated the influence of surrounding environment on the dynamic of Fröhlich polaron with the help of 

semiclassical approach under rotating wave approximation (RWA), in the consideration that we deal with a two-level-system 

(TLS). Both the frequency of the trap and the bandgap value between energy levels of the system particles dictate the resulting 

phenomenon. Trapping of Fröhlich polarons with magnetic field conducts to complete population transfer from excited state to 

ground state with the possibility of the formation of Bose-Einstein Condensates (BEC) at bot low bandgap energy values and 

important value magnetic field frequency. Fundamentally different to polaritons, nomatter the breaking down of Pauli 

Exclusion Principle (BDPEP), the magnetic trapping of quasiparticles Fröhlich polarons conducts to plasma formation when 

both the bandgap value of energy levels and the magnetic field frequency are very important. Detailed analysis of the resulted 

phenomenon will open a new perspctives toward understanding the dynamic of cooled and trapped Fröhlich polarons. 

Keywords: Polarons, Magnetic Field, Trapping, Semiclassical Approach, Bose-Einstein Condensates, Plasma Formation 

 

1. Introduction 

Quantum physics [1] is based on a set of mathematical 

concepts and equations. It requires an adequate physical 

interpretation [1]. Both theoretical and practical exploitation 

of quantum physics have open door to other subdomains 

including quantum communication and computation [2-4] 

which depend on quantum bits (Qbit) [4]. The Qbit can be 

placed in a continuous set of superposition of its two states [5] 

and therefore considered as a quantum TLS. In quantum 

communication and computation, Qbits are used for the 

encoding of information [6]. Far from being a recent area of 

science and technology [7], quantum information is a rapidly 

growing domain of research that involves several scientific 

fields. The research field aims to proced quantum 

information using quantum computers [8]. These are devices 

which provide physical implementation of quantum 

mechanical unitary transformations acting on an array of 

Qbits containing computational inputs in the form of binary 

labeled quantum states [9-12]. The devices transform the 

initial quantum superposed states into final ones [13]. The 

stregth of quantum computer results from its properties [14]. 

The development of quantum computers is preceded by 

that of transistors which are used to construct logic gates 

known as the fundamental building blocks for computations 

and algorithms. Likewise, trapped ions are used to implement 

quantum logic gates. Good logic gates make use of the least 
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energy and operate fast. They are sensitive to small energy 

changes and fast fluctuations in their environment. Qbits-

environment interaction stands as the origin of quantum 

decoherence. Thus, successful implementation of quantum 

computers requires the consideration of the interactions 

between the system and its environment. Several techniques 

are proposed to mitigate the issue known as decoherence 

problem. Some of them include the use of cryogenic cooling 

and error correction code [15], quanum decoherence itself 

[16], QLifeReducer implementation and photon-echo 

technique [17] to cite a few. Other different methods have 

been proposed by authors of Refs.[18-23]. In the 

Computational Condensed Matter Physics and Nanomaterials 

Laboratory at the University of Dchang (West-Cameroon), 

several research works have been carried in the same 

direction [24-27]. 

Among these research works, we find that of Refs. [26, 27] 

more promising in addressing decoherence problem in 

quantum computation. This because, the particles of 

consideration, trapped with magnetic field considered as a 

trap, have been cooled down with laser radiation at very low 

temperature conducting to Bose-Einstein condensates (BEC). 

This state of particles has been termed coherent population 

state by authors of Ref. [26, 27]. Motivated by this 

observation, we follow their theoretical approach to cold and 

trap Fröhlich polaron with a magnetic field which we onsider 

as a trap, given that such a research work has not been 

carried before. Doing it, this paper aims to point out the 

advantages of using magnetic field as a trap to investigate the 

influence of surrounding environnement on the dynamic of 

Fröhlich polaron. 

This paper is divided into four main parts. The second part 

deals with the theory used to approach our problem. In this 

section, we use semiclassical approach under RWA to 

investigate the influence of the trap on the dynamic of 

Fröhlich polaron thereby calculating transition probability 

and energy. The third part presents the numerical results 

obtained and their discussion. Finally, the paper ends up in 

the fourth section with a conclusion and gives certain 

orientation to further research works. 

2. Theoretical Analysis 

There exist several possible Qbit implementation systems 

[28]. In the present study we focus our attention to the 

trapped-ion Qbit device which provided the first 

experimental demonstration of a fundamental quantum logic 

gate [29]. For assumption, important key points are 

considered. First, insted of electromagnetic trap, we consider 

a magnetic trap. Second, in the trap, the ion is replaced with 

an electron which is looked as a TLS with ground and 

excited states 0 and 1 respectively and with corresponding 

energies ( )0,1=iE i . Next, we consider that both electron 

and phonon are confined in the trap, results a quasiparticle 

called cooled and trapped polaron. Finally, we consider the 

one dimensional modes. The system wavefunction Ψ  is a 

linear superposition of electron wavefunction ( ),ϕn nr x , 

localized on the thn  lattice site and dependent on 

internuclear 

displacement �Ψ = ∑ ����	; ��; ��; … ; �������, ���� � . The 

system’s Hamiltonian is given in Eq.1. 

( )
22

2 21
,

2 2 2
µω

µ
 

 = + + + −    
 

∑ ∑m
m m

m m

PP
H x U r ma x

m
 (1) 

In Eq.1, the first and second terms to the right hand side 

correspond respectively to the electron kinectic energy and 

the n-molecule chain total energy in which the parameters µ

and 
2

2µ
mP  indicate the reduced mass and their kinetic 

energy. We consider relative ion displacement to be small in 

such away that reciprocal interaction is taking harmonic. The 

last term to the right hand side of Eq.1 is known as the 

electron-chain ions interaction when the electron is in the 
thm molecules. In order to determine na coefficients, let 

consider Schrödinguer Eq. 2. 

ψ ψ=H E                             (2) 

The substitution of Eq.1 into Eq.2 conducts to the 

eigenvalues Eq. 3 where ( )ε nx is the eigenenergies. Eq.3 

represents the energy associated to an electron when there is 

only one molecule. 

( ) ( ) ( ) ( )
2

2 , , ,
2

ϕ ε ϕ
 
− ∇ + − = 
  

n n n n n n

h
U r na x r x x r x

m
 (3) 

Following the assumptions made on ( ),− mU r ma x and 

( ),ϕn nr x , we then obtain Eq.4 where the parameter 

( ),n mJ x x  expressed in Eq.5 is a superposition integral and 

the parameter ( )1 2 3, , , ...,n nW x x x x  (Eq.6) describes the 

perturbation on ( )ε nx due to other atomic entities in the trap. 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
2 2

1 2 3 1 2 3

1 1 1 2 3 1 1 1 2 3 1 2 3

1
, , , ..., , , , ...,

2 2

, , , , ..., , , , , ..., , , , ...,

ε µω
µ

+ + − −

  
 + + + + 

    

+ =

∑ m
n m n n n n

m

n n n n n n n n n n

P
x x W x x x x a x x x x

J x x a x x x x J x x a x x x x Ea x x x x

             (4) 

( ) ( ) ( ) ( )*, , , ,ϕ ϕ= −∫n m n n n m mJ x x dr r x U r na x r x                                                   (5) 
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( ) ( ) ( )2

1 2 3, , , ..., , ,ϕ
≠

= −∑∫n n n n p

p n

W x x x x dr r x U r pa x                                                (6) 

If internuclear coordinates were all blocked in the same 

equilibrium position x , eigen coefficients then take the 

standard value indicated in Eq.7 and eigenvalues of the 

proceeding Eq.4 are given in Eq.8, where we have choosen 

( )1, + = −n nJ x x J , negative constant in agree with negative 

potential U . 

=k ikna
na e                                        (7) 

( ) ( ) ( )2 2
1 2 3, , , ..., 2 cos

2
µω= + + −k n n

N
E E x W x x x x x J ka   (8) 

In order to make deeper our treatment, we consider the 

following assumption. First, we consider that the eigenvalues 

( )nE x depends linearly by nx on ( ) γ= −n nE x x . Second, 

the parameter ( )1 2 3, , , ...,n nW x x x x is negligeable, since 

other atomic entities such as electrons and phonons lightly 

influence particle of consideration. Third, supperposition 

integral is independent from internuclear coordinates 

( )1, + = −n nJ x x J . From the above considerations, the 

Hamiltonian Eq.1 takes the reduced form of Eq.9 in which 

the parameters ( )*
, ,σ σi jc c denote electron creation 

(destruction) operators on site ( )i j with spin σ . 

( )* *
, ,

, ,

.σ σ
σ

γ= − + + −∑ ∑
≺ ≻

i j P j j j

i j j

H J c c h c H x c c
    (9) 

In Eq.9, we eliminate spin index as we are treating a single 

particle problem. With ,≺ ≻i j we indicate first neighbours, 

while with PH we means Eq.10. Here and from Eq.9, we 

introduce the bosonic creation (destruction) operators who 

accounts for phonons Eq.11 and Eq.12 where N indicates 

lattice sites number. 

2
2 21

2 2
µω

µ
 

= + 
 
 

∑ m
P m

m

P
H x                      (10) 

( )1
.

2µω
= − +∑

ℏ
jiqR

j q

q

x a h c e
N

          (11) 

( ).
2

µω= −∑
ℏ

jiqR

j q

q

i
P a h c e

N
            (12) 

From the above, Hamiltonian Eq.9 becomes as given in 

Eq.13 where we introduce the coupling constant 

2

γ
ω µω

= ℏ

ℏ
g . 

( )
, , ,

.

σ
ω ω+ + + +

−

 
 = − + + + +
 
 
∑ ∑ ∑
≺ ≻

ℏ ℏ

jiqR

j j q q j j q q

i j q j q

e
H J c c h c a a g c c a a

N
    (13) 

If we consider Eq.14 and Eq.15 and following theoretical 

formalism of [30], we can obtain the final Hamiltonian form 

Eq.16 which corresponds to Holstein Hamiltonian. 

1 −+ += ∑ iikR
k i

i

c c e
N

                        (14) 

1 += ∑ iikR
k i

i

c c e
N

                            (15) 

( ) ( )
,

ωε ω+ + + +
−= + + +∑ ∑ ∑

ℏ
ℏk k q q k k q q

k q k q

g
H k c c a a c c a a

N
 (16) 

In Eq.16 ( )+
k kc c  denote electron creation (destruction) 

operators and ( )+
q qa a bosonic creation (destruction) 

operators who accounts for phonons; ( )ε k  the electronic 

band in tight binding approximation in which we account 

only for supperposition of atomic orbitals if they are first 

neighbours. Such energy of the electronic part substitutes the 

free particle energy of the Hamiltonian ( )
2

2
ε
 

= 
  

k
k

m
. 

Hamiltonian Eq.16 can be considered as that of Fröhlich 

polaron or large polaron when the bandwidth ( )ε k  is large 

enough. The application of RWA [31] to Eq.16 conducts to 

the appropriate form (Eq.17) of the interaction Hamiltonian, 

the last term to the right hand side of Eq.16 and the total 

Hamiltonian of the system changes to that of Eq.18. 

( ) ( )
,

( ) σ σ+ + +
− − − ++ = +∑ ∑k k q q q q

k q q

c c a a G q a a
        (17) 

( )0 ω σ σ+ +
− += + + +ℏH H a a G a a          (18) 

The Hamiltonian of this kind has been given by [26, 27] 

to model decoherence in quantum computers. In Eq.18, the 

first term to the right hand side is the contribution of the 

free Qbit. The second term is the contribution of the 

environmental field modes alone for mode frequency ω and 

( )+a a  are mode creation (destruction) operators [32]. The 

third term is the interaction term describing the interaction 

between the Qbit and the thermal field modes, with 

coupling ( )G q . Within our simulation, we consider the 

phonon cloud as an atomic entity so that Eq.18 can take the 

best mathematical form. Under the effect of the magnetic 

field, the motion of the system is completely slow down. 

The effect of the trap is mathematically formulated through 

it Hamiltonian Eq.19 which has been proposed by [27] 

where ω λµ=B B B is the corresponding magnetic field 

frequency, λ the gyromagnetic factor, µB the Bohr 

magneton and B the magnetic field. 
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3
2

ω
σ= B

BH                            (19) 

The total Hamiltonian of the system takes the form of Eq.20 

and it is called the Jaynes-Cumming Hamiltonian [27, 31]. 

( )0 3
2

ω
ω σ σ σ+ +

− += + + + +ℏ
BH H a a G a a      (20) 

Following the mathematical formalism of [27], the 

Hamiltonian Eq.20 becomes as given in Eq.21 if we ignore 

the scalar term 0 1

2

+E E
I for simplicity where the parameter 

0ω ω∆ = −B and 0ω is the transition energy between the 

lower 0 and upper 1  energy states at unit ℏ . 

( )3
2

σ ω σ σ+ +
− +

∆= + + +ℏH a a G a a                  (21) 

It is possible to solve the Schrödinger Eq.22 for a wave 

function 0 1ψ ψ ψ= +a b where a and b are transition 

probability amplitudes given the Hamiltonian of the type 

Eq.21 in the Fock space F being the Hilbert space over C . 

ψ ψ∂ =
∂

i H
t

                                    (22) 

To illustrate our model based on Eq.22 given Hamiltonian 

Eq.21, we first consider a unitary operator ( )=U U t  and set

φ ψ= U in order to show how Eq.22 can be simplified 

into the non linear Schrödinger equation

1 1
φ

φ− −∂ ∂ = + ∂ ∂ 

U
i UHU i U

t t
. If we further let ( )U t as 

given in Eq.23, then simple calculation conducts to the pure 

Schrödinger Eq.24. 

3
2( )

ωσ ω= ⊗
it

it NU t e e
                             (23) 

2

2

ω
φ

φ
ω+

∆ − 
 ∂

=  
∆ −∂  −

  

Ga

i
t

Ga

                     (24) 

To simplify our calculations, we consider Eq.25 given that 

Eq.26 is verified. We can then arrive to the expression of 
−itAe  based on RWA formalism Eq.27 where δ ω= ∆ −  and 

2
2

4

δη = + G N . 

2

2

ω

ω+

∆ − 
 

=  
∆ − −

  

Ga

A

Ga

                                                                                     (25) 

2
2

2

2

0
2

0
2

ω

ω

+

+

 ∆ −  +  
  =  

∆ −  +    

G aa

A

Ga a

                                                                 (26) 

( ) ( ) ( )

( ) ( )

2 2

2

2 2

sin sin

cos _
2

sin sin
cos

2

η ηδη
η η

η ηδη
η η

−

+

 + + 
+ − 

+ + =  
 
 − +
  

itA

t G t G

t G i iG a

G G
e

t t
G a t i

                                           (27) 

From Eq.27, the solution to the Schrödinger Eq.24 is given by Eq.28. 

( )
( ) ( ) ( )

( ) ( )
( )

2 2

2

2 2

sin sin

cos _
2

0

sin sin
cos

2

η ηδη
η ηφ φ

η ηδη
η η

+

 + + 
+ − 

+ + =  
 
 − +
  

t G t G

t G i iG a

G G
t

t t
G a t i

                             (28) 

From the initial transformation set φ ψ= U , then the system’s wavefunction is given in Eq.29. 
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( )

( ) ( ) ( )

( ) ( )
( )

2

2

2 2

2

2 2

0

0

sin sin

cos _
2

0

sin sin
cos

2

ωω

ωω

ψ

η ηδη
η η ψ

η ηδη
η η

 − 
 

 + 
 

+

 
 

= × 
 
  

 + + 
+ − 

+ + 
 
 
 − +
  

it N

it N

e
t

e

t G t G

t G i iG a

G G

t t
iG a t i

                                 (29) 

In this study, we limit ourselves to the initial conditions

( ) 1
0 0

0
ψ  

= ⊗ 
 

for the wavefunction ψ . Within this 

regime, the transition probability amplitudes a and b take the 

expressions given in Eq.30 and Eq.31. 

( ) ( ) ( )2

2

2

sin

exp cos _
2 2

ηω δη
η

 +  = − +  
   +

 

t G

a t it t G i

G
      (30) 

( )( ) exp sin
2

ω η
η

 = − − 
 

G
b t i it t                     (31) 

From the above transition probability amplitudes, the 

probability of finding the electron coupled with phononic 

modes is given by Eq.32 following the mathematical analysis 

of [26]. 

( )
2

1 cos 2
2

η
η
 = −
 

G
P t                             (32) 

According to the Schmidt decomposition, it is possible to 

calculate the Von Neumann entropy which characterizes the 

decoherence state of the system as revealed the authors of 

Ref. [27]. Theoretically, following the Schmidt 

decomposition, the entropy of the system takes the form of 

Eq.33 where a and b are the same transition probability 

amplitudes Eq.15 and Eq.16 respectively. 

2 2 2 2
ln ln= − −S a a b b                           (33) 

3. Numerical Results and Discussions 

In this section, we numerically discussed the influence of 

surrounding environment on the dynamic of cooled and 

trapped polaron for bandgap energies values used in 

experimental studies of [33-36]: (a) 0 0.004ω =  [33]; (b) 

0 2.6ω =  [34]; (c) 0 3.5ω =  [35] and (d) 0 12.5ω =  [36]. 

The cooled and trapped polaron will be call for simplicity 

polaron. We begin with the graphical representation (Figure 

1) of the density of the population in the exited state versus 

coupling strength constant for some values of magnetic field 

frequency in various cases of bandgap values used in 

different experimental studies mentioned above. We choose 

the parameter values 0.5=N  and 1.5=t . At the beginning 

of the trapping process, the system is in the ground state. The 

probability of finding the trapped polaron in the excited state 

increases with coupling strength constant. The dynamic of 

the polaron is controled by the surrounding phononic 

environment. Such a result has been observed by [26] in the 

case of polariton. The result is due to the BDPEP as predicted 

by [37] and confirmed by [38]. The polaron behaves alike to 

the polariton under cooling and trapping processes with 

magnetic field. The figure (Figure 1) shows that the effet of 

the trap on the system is a function of coupling strength 

constant g . Coherent population transfert from ground to 

excited state is observed if the bandgap energy value of the 

system is neither too low nor too high (Figure 1c). 
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Figure 1. Transition probability versus coupling strength constant for some values of magnetic field frequency in various cases of bandgap values used in 

different experimental studies: (a) 0 0.004ω =  [33]; (b) 0 2.6ω =  [34]; (c) 0 3.5ω =  [35]; (d) 0 12.5ω =  [36]. Here, the parameter value 0.5=N and

1.5=t . 

  

  

Figure 2. Transition probability versus time for some values of magnetic field frequency in various cases of bandgap values used in different experimental 

studies at both low ( )0.35=g and strong ( )1.6=g  coupling strength constant: (a) 0 0.004ω =  [33]; (b) 0 2.6ω =  [34]; (c) 0 3.5ω =  [35]; (d) 0 12.5ω =  

[36]. Here, other parameter values are 0.5=N and 0.02ω = . 

In Figure 2, the parameter of interest is the cooling and 

trapping time. We depicted transition probability versus time 

for some values of magnetic field frequency in various cases 

of energy bandgap values at both low ( )0.35=g and strong 

( )1.6=g  coupling regime. The values of 1≺g and 1.6=g

have been identified by [26] as being in the low and strong 

coupling strength constant respectively in the Rabi model. 

No matter their study has been focused on polariton, we also 

find interesting to use the values in the present study for the 

reason which is being already mentioned in the former 

paragraph. Figure 2 presents Rabi oscillation which is in 

accordance with the result of [26]. Very long time cooling 

and trapping process conducts to intereferences. This is 

observed through an incresing number of Rabi oscillation. 

The cooled and trapped polaron manifest itself as being 

potential candidate for interferometry applications. 
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Transition probability versus magnetic field frequency is 

depicted in Figure 3 for various cases of bandgap values [33-36] 

at both low ( )0.35=g [Figure 3a] and strong ( )1.6=g  

[Figure 3b] coupling strength constant respectively. The figure 

shows the dependance of transition probability to the intrinsic 

parameter of the trap, i e magnetic field frequency. We observe 

that without cooling and trapping process, the probability of 

finding the polaron in the excited state is very important. This 

result is in accordace to that of [27]. The probability of finding 

the polaron in the excited state decreases progressively with 

magnetic field frequency. Thus, trapping conducts to complete 

population transfer from excited state to ground state with the 

possibility of the formation of BEC at bot low bandgap energy 

values and important value magnetic field frequency. In contrast, 

when the bandgap energy value is too important ( 0 12.5ω = ), 

we oberve another behaviour of the system, when the magnetic 

field frequency is beyond 0.2ω =B , leading to a phenomenon 

which seems like complete population transfer from ground to 

excited state. The explanation which comes from such a result is 

that, due to strong magnetic field, ionized particles associated to 

free electrons do not conduct to cooling and trapping of atomic 

entities, but instead plasma formation [39]. The observed 

evolution of transition probability in term of magnetic field 

frequency when the bandgap energy is very important can be 

interpreted in terms of quasiparticles scattering. This result, 

which stands as one of our best result, complete the 

shortcomings observed in the research works of [26, 27]. 

In Figures 4-6, we schematically depicted the Von 

Neumann entropy of the system againts time [Figure 4], 

coupling strength constant [Figure 5] and magnetic field 

[Figure 6]. It is evident that the entropy makes almost 

periodic oscillation [Figure 4]. This means that the magnetic 

field can be use to help to realize and stabilize the degree of 

entanglement between the polaron and the field at a high 

level. Sometimes [Figure 4 (a-c)], for low bandgap energy, 

the polaron field system becomes paramountly entangled. We 

find that the entanglement can last a longer time as the 

system of cooled and trapped polaron is strongly coupled 

with the trap. The entanglement decays to the asymptotic 

value in both larger values of coupling strength constant and 

photon's frequency. So far, it's observes that these figures 

seems like those obtain by authors of Ref. [40]. To properly 

illustrate how the trap influences the dynamic of polaron, the 

response of entropy versus coupling strength constant is 

shown in Figure 5 for differents values of magnetic field and 

in various cases of bandgap energy values [33-36]. At low 

interaction system-environment and for different values of 

magnetic field intensity, almost notting happens in the 

system. The entropy is the linear evolution of the coupling 

strength
g

. Around the value 
1.6=g

 the entropy exibits a 

power law decay. The linear phase is an indication of the 

energy shift of the polaron state. Yields the formation of 

repulsive or upper polaron (UP) and attractive or lower 

polaron (LP). The parabolic transient stands for the ultrafast 

cooled and trapped polaron formation. Following the analysis 

of [38], the observation of both repulsive and attractive 

quasiparticles branches of cooled and trapped polaron energy 

predicts the possibility of formulating Landau Zener (LZ) 

problem in magnetic cooling and trapping of polaron. The 

strong coupling dynamic of polaron is universal, as it is for 

systems with different experimental bandgap values [33-36]. 

Finally, the entropy behaves as similar as the Ramsey 

contrast associated with orthogonality catastrophe. The 

phenomnon was originally studied in the context of x-ray 

absorption spectra in metals, where high-energy x-ray 

photons create atomic core holes by photoemission of inner-

shell electrons. Today, it is a challenge for theoretical 

approaches to investigate an exact solution of orthogonality 

catastrophe. However, theoretical analysis based on magnetic 

trapping of atomic entities such as polaron would be ideally 

suited to probe the competition between these effects. For the 

lowest and strongest possible interactions with surrounding 

environment, a description of the dynamic of cooled and 

trapped polaron with magnetic field in terms of entropy is 

depicted in Figure 6 as a function of magnetic field. For 

intermediate bangap energy values, i e 0 2.6=ω  [34] and (c) 

0 3.5=ω  [35], the increase in the magnetic field leads to the 

decrease in entropy reaching almost zero which indicates the 

formation of BEC. In contrast, for lower bandgap energy, an 

increase in the magnetic field conducts to the destruction of 

the coherent state of the system. Meanwhile, in the regime of 

important value bandgap energy, the same interpretation is 

given as in the case of Figure 3. 

  

Figure 3. Transition probability versus magnetic field frequency for various cases of bandgap values used in different experimental studies at both low 

( )0.35=g  (a) and strong ( )1.6=g  (b) coupling strength constant respectively. 
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Figure 4. Graphical representation of entropy versus time for various cases of bandgap values used in different experimental studies at both low ( )0.35=g  

(a) and strong ( )1.6=g  (b) coupling strength constant respectively. 

 

  

Figure 5. Entropy versus coupling strength constant for some values of magnetic field B for various cases of bandgap values used in different experimental 

studies. 
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Figure 6. Entropy versus magnetic field B for various cases of bandgap values used in different experimental studies at both low ( )0.35=g  (a) and strong 

( )1.6=g  (b) coupling strength constant respectively. 

4. Conclusion 

In summary, we have vestigated the influence of magnetic 

trap on the dynamic of electron coupled with phononic 

modes originated by a lattice of diatomic molecules. Under 

semi-classical approach, we evaluated transition probabilities 

and Von Neumann entropy using RWA. Through theoretical 

analysis, we consider the polaritonic entity as being a TLS. 

We found that, trapping of Fröhlich polarons with magnetic 

field conducts to complete population transfer from excited 

state to ground state with the possibility of the formation of 

BEC at bot low bandgap energy values and important value 

magnetic field frequency. Moreover, despite the BDPEP, the 

magnetic trapping of quasiparticles Fröhlich polarons 

conducts to plasma formation when both the bandgap value 

of energy levels and the magnetic field frequency are very 

important. At low coupling with surrounding environment 

the entropy is the linear evolution of the coupling strength g  

which corresponds to the energy shift of the polaron state 

with consequences the formation of UP and LP which predict 

the possibility of formulating LZ problem in cooling and 

trapping of polaron. In contrast, around the value 1.6=g , the 

entropy exibits a power law decay. The entropy behaves as 

similar as the Ramsey contrast associated with orthogonality 

catastrophe, meaning that cooled and trapped polarons are 

suited candidate to provide insight into theoretical analysis in 

orthogonality catastrophe questions based. 
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