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Abstract: In this work, we present a particular nonlinear transmission line called chameleon nonlinear transmission line. In 

fact, the chameleon’s behavior is related to the fact that without changing its appearance, the line can exhibit alternatively 

purely right - or left - handed behavior. This transmission line is different to the composite one. So, the goal of this work is to 

demonstrate that this special line can support the propagation of soliton light pulse subjected to quintic – phase modulation, 

improve the freak wave’s mechanism of generation and verify the chameleon’s behavior of the line. Consequently, we employ 

collective coordinate’s theory in order to give a great characterization of the light pulse. Then, we introduce an upgraded 

function called “type II Ansatz function” with eight collective coordinates compared to the conventional Gaussian Ansatz with 

six collective coordinates. We show that the two additional coordinates will allow us to improve the technique of measurement 

of internal excitation leading to the generation of rogue events. Moreover, these coordinates will give supplemental details on 

frequency shift and chirp distortions during the generation of specific rogue events such as “wall of waves”, tree structures, 

multi - wave trains, Kuznetsov - Ma breathers, Akhmediev breathers, Peregrine solitons and triangular rogue waves. The 

stability of the soliton light pulse will be also investigated at specific frequency ranges. 

Keywords: Triangular Rogue Waves, Chameleon Transmission Line, Multi - Wave Trains, Tree Structures,  

Collective Coordinates 

 

1. Introduction 

Metamaterials are materials which present a negative 

refraction index compared to ordinary materials with positive 

one [1, 2]. Consequently, this type of materials which is not 

found in nature is named negative index, double - negative or 

left - handed metamaterials [1, 2]. Further, transmission lines 

are found at microwave frequencies zone [3, 4]. This discovery 

leads to left - handed transmission line capable to support 

soliton light pulses propagation [5 - 11]. Thereafter, composite 

right/left - handed transmission lines are also found where left 

- handed behavior is presented at low frequencies and right - 

handed behavior at high frequencies [12 - 18]. 

Recently, a new field of investigation has emerged where 

extreme events lead to many physical applications [19 - 21]. 

Furthermore, extreme events are found in several domains 

such as nonlinear optics [22], lasers [23], and plasmas [24]. 

In addition, some interesting extreme events have been 

studied such as Peregrine solitons [25], Kuznetsov - Ma 

breathers [26 - 28], Akhmediev breathers [26, 29 - 31] in the 

nonlinear Schrödinger equation [32]. The most important 

freak wave’s mechanism of generation is modulation 

instability which fundamentally acts on nonlinear dispersive 

systems [33]. In optics, modulation instability originates 
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from noise results in a series of high - contrast peaks of 

random intensity [34, 35]. Besides, it is these localized peaks 

that have been compared with similar structures seen in 

studies of ocean rogue waves [32, 36, 37]. Modulation 

instability has been intensively studied in many domains such 

as nonlinear optics [38], plasma physics [39], hydrodynamics 

[40], electrical transmission lines [41], Bose-Einstein 

condensates [42 - 44], and optical fibers [45]. 

However, a strange phenomenon called “tree structure” 

which is directly related to chaotic waves field due to 

modulation instability, has been recently outlined [46]. Some 

studies have been made concerning the so - called “tree 

structure”. Among them, we have the “Christmas tree” which 

appears during the formation of Peregrine waves [47]. Such 

phenomenology has been firstly observed and extensively 

analyzed in [48], which is linked to the umbilical gradient 

catastrophe. Moreover, Raman Effect can induce the 

appearance of particular “tree structure” with roots which can 

be called “roots of propagation” [46, 49]. Others authors such 

as Dudley [50], sustains that such “tree structures” are 

corresponded to signatures of analytic nonlinear Schrödinger 

equation solutions in chaotic modulation instability. Further, 

several investigations in metamaterials including extreme 

events have been presented in literature [47, 51 - 54], but 

some others have employed collective coordinates theory [46, 

55 - 60]. To the best of our knowledge, the use of an 

upgraded function called “type II ansatz function” [61], in 

order to give an exact measure of internal excitation leading 

to the generation of special extreme events such as “wall of 

waves”, tree structures, triangular rogue waves and multi- 

wave trains, has been least reported in literature. 

In this paper, according to considerations made in [41, 62, 

63], we use an upgraded function called “type II Ansatz 

function” with eight coordinates [61], compared to the 

conventional Gaussian Ansatz with six coordinates [46, 55 - 

60]. The so - called “type II Ansatz function” introduces two 

additional coordinates which give supplemental details on 

internal agitation leading to freak wave’s generation. We 

introduce at the first time quintic - phase modulation on a 

specific line called chameleon transmission line. So, the 

quintic - phase modulation strength of distortion is strongly 

evaluated in order to improve the comprehension of freak 

wave’s mechanism of generation. Some interesting freak 

events due to quintic - phase modulation have been found 

such as the so - called “wall of waves”, tree structures, multi 

- wave trains, triangular freak waves, Peregrine solitons [64, 

65], Akhmediev [66 - 68] and Kuznetsov - Ma breathers. 

Further, the internal agitation which modifies the system in a 

special way when each of the above mentioned freak events 

comes into play, is well measured. The chameleon’s behavior 

of this particular line is specially verified. We organize the 

paper as follows. In Section 2, we present the model of 

chameleon transmission line and give some equations such as 

logarithmic nonlinearity for the capacitance, the voltage 

propagation equations and the nonlinear Schrödinger 

equation model. The coefficients of this last equation are 

calculated and linked to frequency and dimensionless 

capacitor. Thereafter, we apply the collective coordinate’s 

technique [69 - 73], employing the so - called “type II AnsatzS 

function” with eight coordinates [61]. Two additional 

coordinates are introduced respectively called frequency shift 

correction factor and chirp correction factor [61]. These two 

coordinates will give supplemental details on internal 

distortions which occur during the freak wave’s generation. 

Furthermore, we obtain collective coordinate equations of 

motion. In Section 3, we present computational results. Some 

interesting results including the verification of chameleon’s 

behavior of the line, the exact measure of internal and external 

excitation leading to the generation of freaks waves such as the 

so - called “wall of waves”, tree structures, multi - wave trains, 

triangular freak waves, Peregrine solitons, Akhmediev and 

Kuznetsov - Ma breathers, are presented. Otherwise, specific 

frequency ranges where the soliton regains its stability are also 

presented. Indeed, the special influence of dimensionless 

capacitor and that of frequency on freak wave’s mechanism of 

generation are also investigated. We compare the results 

obtained with previous analytical and numerical investigations. 

We summarize the investigation in Section 4. 

2. Mathematical Description of the 

Model 

2.1. Preliminaries 

The model of line under consideration represents a 

nonlinear electrical transmission line where elementary cell 

is illustrated in Figure 1 [62, 63]. 

 

Figure 1. Model for the unit – cell circuit. 

Each unit cell, such as the n
th
 one, contains a linear inductor 

L1 in parallel with a linear capacitor C1 in the series branch and 

a linear inductor L2 in parallel with a nonlinear capacitor C(Vn) 

in the shunt branch. Here we assume that the logarithmic 

nonlinearity for the capacitance is given by [74, 75]: 

����� � ��	�
�
 �� 
1 � �


���                 (1) 

where V0 and C0 take constant values. Applying Kirchhoff’s 

laws to the circuit model, we can obtain the following 

voltage propagation equation [63]: 
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where �� � 	 
	�, ��� � �

! 	�, ��� � �
!�	�. Equation (2) shows that 

an additional dispersion coefficient Cr is considered on the 

line. Thereafter, the numerical simulations will consider the 

following parameters [41, 63]: L1 = 680µH, L2 = 470µH, C0 

= 470 pF and V0 = 3.9 V. The capacitor C1 is a free 

parameter with physically acceptance value [63]. Moreover, 

the quantity Cr significantly modifies the behavior of the 

transmission line [63]. 

Considering Cr = 0 [41, 63], the line adopts the right – 

handed behavior, but for �� > #��
$�� �

!�
! , the transmission line 

exhibits left - handed behavior. It is important to note that a 

rapid calculation leads to 
!�
! ≈ 0.69. 

2.2. The Model 

We establish the nonlinear Schrödinger equation according 

to the considerations made in [63], but reformulated in terms 

of slowly varying envelope of the electric field φ(Z,τ) as 

follows [76]: 

*+
*, � �- ∆�� /�0

/1� � -Γ�|+|�+ � -Γ4|+|5+.            (3) 

The quantities Z = ε (n - Vgt) and τ = ε
2
t stand for the 

position and the time, respectively [63]. Here ε is a positive 

and small parameter. The terms ∆2, Γ0 and Γa are second - 

order dispersion, self - and quantic - phase modulations, 

respectively [55 - 58]. These above mentioned coefficients 

are defined as follows [63]: 

Δ� � � �7�
�$ � 8#���	9$�:;<=�>��5	9�7$=?��>�

�$@��5	9=?��
A��B
             (4) 

Γ� � C$
���� D�1 + E	9=?��
A

��
��5	9=?��
A

��F.                     (5) 

The wave number k is taken in the Brillouin zone. This 

dispersion relation admits two cutoff frequencies at k = 0 

rad.Cell
-1

 and k = π rad.Cell
-1

 [63]. The quantity, Vg, is the 

group velocity given by [63]: 

�G = 8�02−�H�02:sin (M)
�N1+4�HP-�
M

2�2Q2                            (6) 

The term, Γa, called quintic - phase modulation is directly 
linked to self - phase modulation such as [61]:  

Γ4 = RΓ�                                        (7) 

Where α stands for a constant parameter. The parameter, 

Γa, is introduced at the first time in this particular line. 

During the investigation, we will evaluate the specific 

disturbance provoked by this effect on the line. The special 

properties of this particular line will probably influence the 

internal agitation due to quintic - phase modulation in order 

to build up extreme events. 

2.3. Collective Coordinate’s Theory 

2.3.1. Type II Ansatz Function 

The collective coordinate’s technique is a great method of 

characterization of a light pulse intensity profile using Ansatz 

functions [61, 70, 77]. The minimization of the residual field 

is crucial to determine the collective coordinate equations of 

motion also called variational equations. These variational 

equations are essential to obtain a good description of the 

light pulse [55 - 58, 61, 69 - 73, 77]. 

Previous investigations have demonstrated that the 

Gaussian Ansatz function cannot reconstruct the chaotic 

behavior exhibited by rogue events [46, 55 - 58, 61]. 

However, same works have shown that conventional or 

Gaussian Ansatz function can present several internal details 

concerning the internal excitation leading to the generation of 

freak events. In this paper, we introduce an upgraded Ansatz 

function with eight collective coordinates [61]. This new 

function can be called “type II Ansatz function”. Compared 

to Gaussian Ansatz function, type II Ansatz function 

introduces two additional collective coordinates in order to 

improve the comprehension of rogue wave’s mechanism of 

generation. 

The upgraded Ansatz function also called type II Ansatz 

function with eight collective coordinates is given as [61]: 

S(,, U) = V�(,)WXY N− 
1�Z�([)
Z\([) �� + - 
Z]([)

5 � 8U − V�(,):5 + - 
Z^([)
� � 8U − V�(,):C + - 
Z_([)

� � 8U − V�(,):� +
-V`(,)8U − V�(,): + -Va(,)Q                                                             (8) 

The quantities V�, V�, b2�cd2VC, Z_
�e , V`, Va  are the 

conventional collective coordinates often used to represent 

the pulse amplitude, temporal position, full width at half-

maximum (FWHM) of peak power, chirp, frequency shift 

and phase, respectively [55 - 59, 61, 70, 77]. 

We have two additional collective coordinates, X7 and 

X8/2π, respectively called frequency shift correction factor 

and the chirp correction factor [61]. The coordinate X7 

reconstructs all additional frequency fluctuations able to give 

a good description of the soliton self - frequency shift 

behavior. However, the coordinate X8 reconstructs a best 

chirp dynamics and complete the insufficiencies of the 

conventional chirp dynamics coming from the Gaussian 

Ansatz function [61]. Consequently, a good estimation of the 

frequency and temporal shifts depends on the level of 

precision given by type II Ansatz function. 

According to previous works, as shown by conventional 

Ansatz function [55 - 59, 61, 70, 77], type II Ansatz function 

will not be able to reconstruct the chaotic behavior presented by 

rogue events. However, the two additional collective coordinates 

will probably give supplemental details on internal perturbation 

leading to the generation of extreme events. 

2.3.2. Collective Coordinate Equations of Motion 

Then, the equations of motion obtained from bare 
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approximation [58, 61, 70, 77], are given by the following expressions [61, 69]: 

Vf 1�,� � 
12V1V4 � 3
8V1V32V8� ∆2�,�                                                            (9) 

Vf 2�,� � 
�V5 � 3
8V32V7� ∆2�,�                                                                  (10) 

Vf 3�,� � 
�V3V4 � 3
4V33V8� ∆2�,�                                                              (11) 
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2

V34
Γ0�,� � 32√3

27
V14

V34
Γl�,�                        (16) 

Equations (9) – (16) present the variational equations 

which are function of the coefficients ∆2(Z), Γ0(Z) and Γa(Z). 

All these equations are influenced by ∆2(Z). The parameter, 

∆2(Z), responsible to second -order dispersion, maintains a 

symmetric behavior of the pulse. Moreover, the dynamics of 

frequency shift and that of frequency shift correction factor 

are strongly influenced by second - order dispersion. The 

quantities, Γ0(Z) and Γa(Z) influence the dynamic of chirp, 

phase and chirp correction factor. So, quintic - phase 

modulation will probably introduce additional modifications 

on the phase and chirp during the generation of rogue events. 

3. Computational Results 

3.1. Computational Conditions for Electrical Transmission 

Line 

The conditions at the beginning of the propagation are 

inspired to those mentioned in [55 - 58]. According to the 

analysis of our optical system the wave number is taken as k = 

3 rad.Cell
-1

. Otherwise, two lengths of propagation will be 

taken such as Z=3×10
-24

 m and Z=10
-6

 m in order to make a 

great evaluation of the strange behavior of the line. According 

to those distances the previous linear and nonlinear effects can 

act on electrical transmission line. Concerning the collective 

coordinate representation, the dotted red curves correspond to 

the dynamics of collective coordinates obtained from bare 

approximation (Type II Ansatz function) as depicted in Figure 

2(a). Further, the solid black curves represent the dynamics of 

collective coordinates coming from minimization [46]. 

Moreover, the dashed green curve gives the residual field 

energy (RFE) [55 - 58], which outlines the level of internal 

agitation of the light pulse. In addition, at the field 

representations, we respectively have the dashed blue curve 

which stands for the exact field solution of nonlinear 

Schrödinger equation, the solid black curve which corresponds 

to the field reconstructed by collective coordinates coming 

from minimization and the dotted red curve is the field 

reconstructed by collective coordinates originating from type II 

Ansatz function. Figure 2(d) represents the full numerical 

equation [55 - 58]. Moreover, Figure 2(f) shows the 2D full 

numerical equation [49, 50, 54, 78 - 83]. 
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Figure 2. Generation of Akhmediev breathers and Peregrine soliton at Z=3×10-24 m for Cr=0 (Right - handed behavior). Soliton light pulse subjected to 

quintic - phase modulation α=0.2×10-25: (a) Dynamic of collective coordinates when ω=0.25 rad/s; (b) Intensity of fields when ω=0.78 rad/s; Full numerical 

equations: (c) ω=0.25 rad/s, (d) ω=1 rad/s and (e) ω=0.35 rad/s; (f) 2D full numerical equation when ω=5 rad/s [ Frequency ranges considered: 0<ω≤0.78 

rad/s and ω>0.78 rad/s]. 

3.2. Right - Handed Behavior of Electrical Transmission 

Line 

The right - handed behavior occurs on the line when 

0 m �� n 0.69  [63]. Consequently, two cases will be 

investigated known as Cr = 0 and Cr = 0.3. 

3.2.1. Akhmediev Breathers and Peregrine Solitons 

We consider the first case of right - handed behavior such 

as Cr = 0 [41], at the distance Z= 3×10
-24

 m. We study the 

behavior of the light pulse at low frequencies range such as 0 

< ω < 0.78 rad/s. Considering the frequency as ω = 0.25 

rad/s, second - order dispersion, self - and quintic - phase 

modulations come into play. So, the combination of those 

effects induces the appearance of Figure 2. Besides, Figure 

2(c) is the well-known Akhmediev - Peregrine rogue wave’s 

field. This wave’s field is similar to that previously 

investigated in [60]. The field depicted in [60], has been 

generated by the interaction between second - order 

dispersion and cubic - nonlinearity in the composite right/left 

–handed transmission line. However, the wave’s field 

illustrated in Figure 2(c) is induced by the interaction 

between second - order dispersion, self - and quintic - phase 

modulations, so its aspect is different compared to that 

observed in [60]. In addition, the Akhmediev - Peregrine 

waves illustrated in Figure 2(c) are small and very narrow 

compared to that seen in [60] which are very large. This 

difference is due to the action of quintic - phase modulation α 

= 0.2×10
-25

, which has deeply modified the waves field 

depicted in Figure 2(c). Moreover, this last remark is well 

confirmed by the dynamic of collective coordinates which 

exhibit significant internal modification in the system as 

illustrated in Figure 2(a). This behavior is different to that 

depicted in [60]. In fact, the action of quantic - phase 

modulation has modified the nature of internal excitation 

called modulation instability [38, 40]. This situation is 

confirmed by the dynamics of collective coordinates due to 

bare approximation (type II Ansatz function) which are 

limited in the interval of distance 0 < Z < 0.45×10
-24

 m 

compared to those obtained in [60]. So, the type II Ansatz 

function produces collective coordinates which are not able 

to predict the behavior exhibited by the light pulse since they 

are limited in the space as depicted in Figure 2(a). But, type 

II ansatz function gives two additional coordinates X7 and X8 

which produce supplemental information on frequency shift 

and chirp modifications. In addition, as depicted in Figure 

2(a), the dynamics of collective coordinates coming from 

minimization adopt one broken point and linear behavior 

compared to that obtained in [60] which has exhibited several 

broken and random behavior. It is clearly appeared that 

quintic - phase modulation hardly modifies the system. We 

consider an increase of frequency from ω = 0.25 rad/s to ω = 

0.35 rad/s and Figure 2(e) is obtained. In fact, the Akhmediev 

- Peregrine waves field [84] depicted in Figure 2(c) is 
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completely transformed into a single Peregrine wave 

illustrated in Figure 2(e). This single rogue event exhibits on 

the left part a generation of continual sidelobes similar to 

those often induced by third - order dispersion [57]. So, it 

appears that quintic - phase modulation has delated the part 

of field containing Akhmediev breathers which are replaced 

by a continual generation of sidelobes as depicted in Figure 

2(e). If the frequency continues to increase from ω = 0.35 

rad/s to ω = 0.78 rad/s, the system regains in stability as 

depicted in Figure 2(b). However, this stability is not 

completely obtained since the three curves depicted in Figure 

2(b) are not superimposed. One can suggest that the 

perturbation coming from quintic - phase modulation 

continues to act in the system. Hence, the stability of the light 

pulse is totally obtained for ω > 0.78 rad/s as seen in Figures 

2(d) and (e). In fact, the 2D and full numerical equations 

represent stable soliton light pulses which are depicted in 

Figures 2(d) and (e). In addition, the transmission line 

presents high perturbations at low frequencies and a stable 

propagation at high frequency. This behavior represents the 

main characteristic of the right - handed propagation. 

3.2.2. Generation of Special Structures 

We consider Cr = 0 and ω = 1 rad/s. The quintic - phase 

modulation increases from α = 0.2×10
-25

 to α = 0.2× 10
-21

 and 

we obtain Figure 3. Compared to Figure 2(a), the dynamic of 

collective coordinates due to bare approximation are 

developed during all the length of propagation as depicted in 

Figure 3(a). However, they are maintained close to zero. 

Moreover, the dynamic of collective coordinates coming 

from minimization exhibit one group of broken points as 

depicted in Figure 2(a). In fact, the broken point appears at 

Z=0.2×10
-24

 m. After this distance, all the dynamic of 

collective coordinates adopt linear and constant values. This 

kind of modification suggests the birth of an extreme event as 

depicted in Figure 3. Thus, the residual field energy sustains 

this assertion since its value is maintained around 100 

percent. This value suggests the activity of a strong internal 

agitation as seen in Figure 3(a). This high internal excitation 

leads to Figure 3(b). The exact field solution of the nonlinear 

Schrödinger equation is tried to maintain its Gaussian aspect. 

However, the high value of the dynamics of FWHM depicted 

in Figure 3(a), justifies the large structure presented in Figure 

3(b). The field reconstructed by collective coordinates due to 

type II Ansatz function exhibits the aspect of a small narrow 

rogue wave. This narrow wave is not superimposed to exact 

field, so those collective coordinates are not able to 

reconstruct the behavior of the exact field. The field 

reconstructed by collective coordinates originating from 

minimization is completely destroyed as shown in Figure 

3(b). The corresponding full numerical equation is illustrated 

in Figure 3(c) where a strange extreme event is represented. 

This extreme event is large at the low part and very narrow at 

the high part. So, its size gradually decreases from the low 

part to the high part as depicted in Figure 3(c). Moreover, this 

behavior is matched with that described by the corresponding 

exact field depicted in Figure 3(b). 

 

 

 

Figure 3. Generation of special structures at Z=3×10-24 m for Cr=0 (Right - 

handed behavior) when ω=1 rad/s. Soliton light pulse subjected to quintic - 

phase modulation α=0.2×10-21: (a) Dynamic of collective coordinates; (b) 

Intensity of fields; (c) Full numerical equation [ Frequency ranges 

considered: 0<ω≤0.78$ rad/s and ω>0.78 rad/s]. 

3.2.3. Multi- Wave Trains Generation and Tree Structure 

We consider the second case of right - handed behavior of 

the line such as Cr = 0.3 and ω = 0.15 rad/s. Then, quintic - 

phase modulation continues to act such as α = 0.2×10
-25

 and 
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we obtain Figure 4(a). The dynamic of collective coordinates 

due to bare approximation are limited in one interval of 

distance 0 < Z < 0.45×10
-24

 m as seen in Figure 4(a). This 

behavior reveals that the system is hardly distorted by quintic 

- phase modulation and the type II Ansatz function cannot 

predict the behavior of the light pulse during all the distance 

of the propagation. However, the frequency shift and chirp 

correction factors give additional details on the internal 

excitation which strongly distorts the system as depicted in 

Figure 4(a). Moreover, the dynamics of amplitude and that of 

chirp correction factor present one group of broken points at 

Z = 0.2× 10
-24

 m. So, these two dynamic exhibit high values 

suggesting that the propagation will be done with the birth of 

extreme events associated with a strong modification of the 

chirp as shown in Figure 4(a). According to collective 

coordinates coming from minimization one group of broken 

points appears at Z = 0.1×10
-24

 m. After this distance, the 

dynamic of collective coordinates due to minimization adopt 

linear behavior as depicted in Figure 4(a). It appears that type 

II ansatz function produces collective coordinates unable to 

reconstruct those coming from minimization. 

 

 

 

Figure 4. Generation of wall of waves, tree structure and Kuznetsov - Ma breathers at Z=3×10-24 m for Cr=0.3 (Right - handed behavior). Soliton light pulse 

subjected to quintic – phase modulation α=0.2×10-25: (a) Dynamic of collective coordinates when ω=0.15 rad/s; Full numerical equations: (b) ω=0.20 rad/s, 

(c) ω=0.15 rad/s and (d) ω=0.25 rad/s; (e) 2D full numerical equation when ω=0.15 rad/s; (f) Intensity of fields when ω=0.15 Mrad/s [ Frequency ranges 

considered: 0<ω≤0.78 rad/s and ω>0.78 rad/s . 
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The dynamic of collective coordinates depicted in Figure 4 

(a) represent the exact measure of the internal excitation 

leading to the extreme event illustrated in Figure 4(c). We 

observe the generation of three continual wave trains. These 

wave trains are very narrow and are similar to three walls. 

Moreover, the structure is composed by a main waves train at 

the middle of the system which is surrounded by two lateral 

wave trains as depicted in Figure 4(c). Previous 

investigations have shown that a wave train is created by 

modulation instability as seen in [33, 40, 59, 60]. However, it 

appears that the nature of modulation instability has changed 

in order to induce the generation of three wave trains as 

depicted in Figures 4(a) and (c). The main waves train at the 

middle corresponds to the brown straight line depicted in 

Figure 4(e) where the 2D full numerical equation is presented. 

The two lateral wave trains correspond to the two blue curves. 

Each of these wave trains has undergone a deviation of sense 

at the distance Z = 1.5×10
-24

 m. This strange behavior 

suggests the modification of the modulation instability 

responsible to a such behavior as illustrated in Figures 4(a) 

and (e). At the beginning of the propagation, we observe 

some divergent waves similar to roots. So, the structure 

illustrated in Figure 4(e) is called tree structure [46]. The 

corresponding “roots” are called roots of propagation. This 

kind of structure corresponds to the signature of analytic 

nonlinear Schrödinger equation solutions in chaotic 

modulation instability as predicted [46, 47, 49, 50, 83]. 

3.2.4. Kuznetsov - Ma Wave Breathers 

We consider an increase of frequency from ω = 0.15 rad/s 

to ω = 0.20 rad/s and the quintic – phase modulation is 

maintained such as α = 0.2×10
-25

. The increase of frequency 

has induced the reduction of quintic - phase modulation 

strength of distortion. This situation has provoked the 

disappearance of the two lateral wave trains previously 

observed in Figures 4(b) and (e). This fact induces the 

generation of the single waves train depicted in Figure 4(b). 

Another increase of frequency from ω = 0.20 rad/s to ω = 

0.25 rad/s continues to strongly modify the modulation 

instability [33, 40, 59, 85], in order to provoke the generation 

of the Kuznetsov - Ma waves train [59] depicted in Figure 4 

(f). This waves train generated by particular modulation 

instability has been well investigated in [59]. Besides, we 

consider a significant increase of frequency from ω = 0.25 

rad/s to ω = 0.15 Mrad/s leading to the stable structure 

obtained in Figure 4(f). This structure is obtained by a 

suitable compensation process [46], between second - order 

dispersion, self - and quintic - phase modulations. The so - 

called compensation process induced by an increase of 

frequency provokes the superimposition of the three curves 

depicted in Figure 4(f). This situation suggests the regain of 

the stability by the soliton light pulse. So, Figure 4(f) reveals 

the stability and the robustness of this wave called soliton 

light pulse [46]. It appears that Figure 4 suggests a high 

distorted environment at low frequencies, but a stable 

propagation at high frequencies. This behavior is same to that 

obtained in Figure 2. This is the traditional behavior of right - 

handed propagation. So, the line has adopted the right - 

handed behavior when 0 < Cr < 0.69. 

3.3. Left - Handed Behavior of Electrical Transmission 

Line 

The left - handed behavior of the line appears when Cr > 

0.69. Two cases of left - handed behavior are investigated 

such as Cr = 1 and Cr = 10. 

3.3.1. Stability of Light Pulse at Low Frequencies 

We consider the first case of left - handed behavior of the 

line such as Cr = 1 and we obtain Figure 5(a) for ω = 0.15 

rad/s and α = 0.2×10
-25

. The structure of the line has not 

changed but its behavior is modified. The dynamic of 

collective coordinates coming from bare approximation are 

reconstructed by those originating from minimization as 

depicted in Figure 5(a). This situation reveals the stability of 

the light pulse suggesting a perfect compensation process 

between second - order dispersion, self - and quantic - phase 

modulations [46]. Moreover, the precedent assertion is 

confirmed by residual field energy since its value is 

maintained around 0.05 percent suggesting a good 

reconstruction of the light pulse behavior by type II Ansatz 

function as seen in Figure 5(a). The stability depicted in 

Figure 5(a) is also confirmed in Figure 5(c) since the three 

curves are completely superimposed. This situation reveals 

the presence of a solid and stable wave called soliton light 

pulse as illustrated in Figure 5(c). 

3.3.2. Generation of Special Structures at High 

Frequencies 

We consider a significant increase of frequency from ω = 0.15 

rad/s to ω = 25 Mrad/s. The distance of propagation also 

increases from Z = 3×10
-24

 m to Z = 10
-6
 m for α = 0.2×10

-25
 and 

Figure 5(b) is obtained. The combination between the increase 

of frequency and the distance increases the quintic - phase 

modulation strength of distortion as seen in Figure 5(b). In fact, 

the exact field undergoes several distortions with a small 

extreme event at the middle surrounded on left and right by two 

continual generations of oscillations. In addition, similar 

investigations have been previously obtained in [60]. In fact, the 

structure presented in [60] is obtained by the action of cubic - 

nonlinearity on second - order dispersion. The oscillating 

behavior seen in [60] is different compared to that depicted in 

Figure 5(b) since it has been obtained by the combination of 

second - order dispersion, self - and quintic - phase modulations. 

Another difference is that the structure in [60] has been studied 

by a Gaussian Ansatz function compared to that presented in 

Figure 5(b) which is presented by type II Ansatz function. 

Moreover, the field reconstructed by collective coordinates due 

to type II Ansatz function, is completely destroyed as seen in 

Figure 5(b). 

However, the field reconstructed by collective coordinates 

coming from minimization is maintained its Gaussian 

behavior. Consequently, these two fields are not able to 
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reconstruct the chaotic behavior exhibited by the exact field 

as seen in Figure 5(b). It has been demonstrated that Figure 

5(b) is associated to the generation of Akhmediev - Peregrine 

wave’s field as shown in [60]. It appears that type II ansatz 

function cannot produce collective coordinates able to 

reconstruct the dynamics exhibited by the exact field [60]. 

Nonetheless, we consider a significant increase of quintic - 

phase modulation from α = 0.2×10
-25

 to α = 0.2×10
-2

. 

Thereafter, we also consider a decrease of frequency from ω 

= 25 Mrad/s to ω = 0.25 Mrad/s. The combination of these 

two facts leads to the generation of the structure depicted in 

Figure 5(d). In addition, the exact field is transformed into a 

single and narrow extreme event as depicted in Figure 5(d). 

However, the field reconstructed by collective coordinates 

originating from minimization is practically reconstructed the 

behavior exhibited by the exact field as illustrated in Figure 

5(d). Moreover, the field reconstructed by collective 

coordinates due to bare approximation is totally destroyed. 

The behavior exhibited in Figure 5(d) is similar to that often 

associated to Kuznetsov - Ma waves train as shown in [59]. It 

is clearly appeared that propagation is stable at low 

frequencies and unstable at high frequencies for the first case 

of left - handed propagation. This behavior is a traditional 

behavior of left – handed propagation as shown in [56]. 

 

 

Figure 5. Generation of special structures for Cr=1 (Left - handed behavior) at the distance Z=3×10-24 m (Left) and Z=10-6m (Right). (a) Dynamic of 

collective coordinates when ω=0.15 rad/s; Intensity of fields: (b) ω=25 Mrad/s, (c) ω=0.15 rad/s and (d) ω=0.25 Mrad/s. Soliton light pulse subjected to 

quintic - phase modulation: (a), (b) and (c) obtained for α=0.2×10-25. (d) obtained for α=0.2×10-2 [ Frequency ranges considered: 0<ω≤0.78 rad/s and 

ω>0.78 rad/s]. 

3.3.3. Generation of Triangular Rogue Waves at High 

Frequencies 

We consider the second case of left - handed behavior such 

as Cr = 10 for ω = 25 Mrad/s and we obtain Figure 6(a). The 

dynamic of collective coordinates due to bare approximation 

are limited in the interval of distance 0 < Z < 0.2×10
-6

 m. One 

can suggests that the type II ansatz function cannot predict the 

behavior of the pulse during all the distance of propagation as 

seen in Figure 6(a). However, the dynamic of collective 

coordinates due to bare approximation undergo one group of 

broken points at Z = 0.1×10
-6

 m. The dynamics of phase and 

that of chirp correction factor exhibit high values. Then, type II 

Ansatz predicts propagation with high perturbations on the 

dynamic of phase and chirp correction factor. Considering the 

dynamic of collective coordinates originating from 

minimization, they present a different behavior compared to 

those due to bare approximation as seen in Figure 6(a). Further, 

the dynamic of temporal position, frequency shift and 

frequency shift correction factor undergo several distortions at 

the end of the propagation as seen in Figure 6(a). This behavior 

cannot be predicted by type II Ansatz function during the 

propagation. Moreover, the residual field energy is maintained 

around 100 percent suggesting the activity of high perturbation 

in the system. Consequently, this internal high disturbance will 

probably create an extreme event with small amplitude peaks 

as depicted in Figure 6(a) by the dynamics of amplitude. The 

dynamic of collective coordinates depicted in Figure 6(a) 

correspond to the exact measure of internal excitation leading 

to the generation of the extreme event seen in Figure 6 (b). 

Besides, the exact field corresponds to a periodical and 
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distorted wave which cannot be reconstructed by the field due 

to minimization. This periodical and distorted wave cannot be 

reconstructed by the field coming from type II Ansatz function 

since it is destroyed as seen in Figure 6(b). 

 

 

 

Figure 6. Generation of triangular rogue waves at Z=10-6 m for Cr=10 (Left 

- handed behavior) when ω=25 Mrad/s. Soliton light pulse subjected to 

quintic - phase modulation α=0.2×10-25: (a) Dynamic of collective 

coordinates; (b) Intensity of fields; (c) Full numerical equation [ Frequency 

ranges considered: 0<ω≤0.78 rad/s and ω>0.78 rad/s]. 

The corresponding full numerical equation associated to 

the previous dynamic of collective coordinates and the 

periodical and distorted exact field, is illustrated in Figure 

6(c). In fact, this structure is composed by several Peregrine 

waves which are positioned in order to build up many 

triangles [47, 86 - 89]. So, one triangle formed by these 

Peregrine waves is called triangular rogue waves as seen in 

Figure 6(c). Similar investigations have been made in [86] 

where Darboux transformation technique has been 

numerically applied. In fact, the authors have studied high - 

order rational solutions of the nonlinear Schrödinger equation 

that appear spatiotemporally as triangular arrays of Peregrine 

solitons [86]. Moreover, they have obtained six Peregrine 

solitons which constitute quanta. Those Peregrine solitons 

have been separated and the distances between the adjacent 

peaks were the same. So, this structure has been called rogue 

wave cascade [86]. Another investigation using Darboux 

transformation, has also obtained similar results [88]. Further, 

triangular rogue waves have been also presented in the case 

of rational solutions of the Boussinesq equation [89]. This 

soliton equation has been solvable by inverse scattering [89]. 

Nevertheless, it is important to make a deep analysis of the 

parameter Cr which modifies the behavior of the line. In fact, 

we show that it fixes whenever the line can exhibit left - or 

right - handed behavior. But, a rigorous observation shows 

that a significant increase of this parameter in left - handed 

propagation can amplify the radiations in the system in order 

to build up the wave’s field depicted in Figure 6(c). This 

strange behavior is similar to that observed in metamaterials 

when absorption regime is considered [46, 90, 91, 92, 93]. 

Absorption regime is a particular case of left - handed regime 

(negative index regime). Consequently, the next 

investigations will probably verify the real impact of Cr 

parameter when the different regimes [46], come into play. 

4. Conclusion 

In summary, we have shown that a particular line called 

chameleon transmission line can support the propagation of 

soliton light pulse subjected to quintic - phase modulation. 

The investigation has been done by collective coordinate’s 

theory using an upgraded function called “type II Ansatz 

function” with eight coordinates compared to conventional 

Gaussian Ansatz with six coordinates. The strength of 

distortion of quintic - phase modulation has been studied 

when the line has adopted alternatively right - and left - 

handed behaviors. The internal excitation due to quintic - 

phase modulation has been measured by “type II Ansatz 

function” where the two additional coordinates have given 

supplemental details on frequency shift and chirp. According 

to conditions employed, the nature of this internal excitation 

has been modified in order to build up some extraordinary 

phenomena such as multi - wave trains, triangular rogue 

waves, the so - called “wall of waves”, tree structure, 

Peregrine solitons, Akhmediev and Kuznetsov - Ma breathers. 

The most important point of this investigation is that special 

structure’s generation is strongly influenced by the behavior 
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of the line and the strength of distortion of quintic - phase 

modulation. Furthermore, many outlined points have a major 

physical interest. One, the determination of theoretical 

frequencies where the soliton safeguards its robustness. 

Hence, it is adaptable to data transmission at certain 

conditions for left -or right - handed propagation. Two, the 

internal and external conditions inducing the generation of 

particular structures. Three, additional details given by “type 

II Ansatz function” which improves the comprehension of 

rogue wave’s mechanism of generation. The above 

mentioned results can improve the design of new 

telecommunication media. 
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